COMMITTENTE:

COMUNE DI CASTELBUONO

PROVINCIA DI PALERMO

PROGETTO DI FATTIBILITÀ TECNICA ED ECONOMICA

INTERVENTO:

OPERE DI DRENAGGIO E CONSOLIDAMENTO IN VIA TENENTE ERNESTO FORTE IN CASTELBUONO

OGGETTO:

ELABORATO Nº:

INDAGINI GEOGNOSTICHE, GEOFISICHE E PROVE DI LABORATORIO REALIZZATE DA GEO3 s.a.s. SU INCARICO COMUNALE

R3:

SCALA:

RIF N°: -

Il Geologo

REV:	DATA:	REDATTO:	VERIFICATO:	APPROVATO:
0	08/10/2017	Geol. Roberto Di Paola		

IL RESPONSABILE UNICO DEL PROCEDIMEN

Dott. Ing. SANTI SOTTILE

Laboratorio di Indagini Geotecniche sui terreni

Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010

OGGETTO DEI LAVORI

INDAGINI GEOTECNI CHE-GEOGNOSTI CHE DA EFFETTUARE NEL TRATTO VI A TEN. ERNESTO **FORTE**

COMMITTENTE

COMUNE DI CASTELBUONO

REPORT INDAGINI ESEGUITE

Premessa

Nell'ambito dei lavori aventi oggetto "INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE " il committente <u>Comune di Castelbuono</u>, ha incaricato la società GEO 3 s.a.s., gusta determina n. 267 del 23/12/2016, per la realizzazione di indagini geognostiche, geofisiche e geotecniche di laboratorio nell'area in esame.

Si redige la presente relazione di chiusura delle attività di campo.

Dettaglio attività

Indagini geognostiche

Le attività di indagine hanno compreso l'esecuzione di n. 02 perforazioni a carotaggio continuo denominati S1 ed S2; le perforazioni hanno raggiunto 15.00 metri di profondità ed ubicate in corrispondenza del tratto di Via Ten. Ernesto Forte (S1) e a valle del cedimento manifesto (S2)

Mentre il foro S1 è stato strumentato con piezometro da 2", il foro S2 è stato installato con tubo inclinometrico in alluminio su cui è stata prevista la lettura di zero (o lettura di verticalità).

Per ogni sondaggio eseguito è stata prevista e realizzata una prova penetrometrica dinamica discontinua S.P.T. oltre al prelievo di un campione indisturbato per singolo foro da sottoporre successivamente ad analisi geotecniche di laboratorio.

Descrizione sondaggio S1

Attraverso l'esecuzione del sondaggio S1 si sono potuti rinvenire i seguenti tipi litologici:

0.00-1.60 m: terreni di riporto;

1.60-11.00 m: Argille di colore marrone tabacco, a struttura brecciata, debolmente limose e plastiche, intercalate a vari livelli da porzioni argillitiche, nello specifico, tali porzioni si possono trovare da 3.30 a 3.80 metri e tra 4.50 e 5.10 metri dal P.C.;

11.00-15.00 m: Argille di colore grigio, debolmente coesiva e plastica, con struttura brecciata, intercalate a vari livelli da porzioni maggiormente argillitiche con elementi di dimensioni decimetriche (si allega alla presente relazione la colonna stratigrafica certificata).

All'interno dello stesso, è stata eseguita una prova di tipo SPT a 12.00 metri dal P.C., che ha fornito il seguente risultato:

numero di colpi prova SPT Sondaggio S1: 20-27-31 (si allega di seguito report di calcolo esemplificativo della prova eseguita)

STIMA PARAMETRI GEOTECNICI PROVA SPT1

TERRENI COESIVI

\sim	•					4
('0	esior	10 1	nnn	A)	ren	ata

C C C C C C C C C C C C C C C C C C C						
	Nspt	Prof. Strato	Correlazione	Cu		
		(m)		(Kg/cm²)		
Strato 1	58	12,45	Sanglerat	3,86		

Qc (Resistenza punta Penetrometro Statico)

	Nspt	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm ²)
Strato 1	58	12,45	Robertson (1983)	116,00

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed		
		(m)		(Kg/cm ²)		
Strato 1	58	12,45	Vesic (1970)			

Modulo di Young

TOWARD AT LOUING				
	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato 1	58	12,45	Apollonia	580,00

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	58	12,45	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE

Peso unità di volume

2 000 000000000000000000000000000000000				
	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	58	12,45	Meyerhof ed altri	5,14

Peso unità di volume saturo

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		saturo
				(t/m^3)
Strato 1	58	12,45	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	

Alla profondità compresa tra 7.20 m e 7.60 m dal P.C. si è provveduto al prelievo di un opportuno campione indisturbato, denominato S1C1, successivamente avviato alle analisi di laboratorio. (vedi relazione di laboratorio allegata)

Descrizione sondaggio S2

Attraverso l'esecuzione del sondaggio S2 si sono potuti rinvenire i seguenti tipi litologici:

0.00-.800 m: terreno agrario;

0.80-11.40 m: Argille di colore marrone tabacco, a struttura brecciata, debolmente limose e plastiche, mediamente coesive, intercalate a vari livelli da porzioni argillitiche, nello specifico, tali porzioni si possono rinvenire da 8.50 a 8.80 metri e tra 10.50 e 10.80 metri dal P.C.;

11.40-15.00 m: Argille di colore grigio, debolmente coesiva e plastica, con struttura brecciata, intercalate a vari livelli da porzioni maggiormente argillitiche con elementi di dimensioni decimetriche, nello specifico, tali porzioni si possono rinvenire da 8.50 a 8.80 metri e tra 13.20 e 13.40 metri dal P.C. (si allega alla presente relazione la colonna stratigrafica certificata).

All'interno dello stesso, è stata eseguita una prova di tipo SPT a 10.00 metri dal P.C., che ha fornito il seguente risultato:

numero di colpi prova SPT Sondaggio S2: 30-32-36 (si allega di seguito report di calcolo esemplificativo della prova eseguita)

STIMA PARAMETRI GEOTECNICI PROVA SPT2

TERRENI COESIVI

~ .			
Coesione	non	dre	nata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strat	0.1	10,45	Sanglerat	4,52

Oc (Resistenza punta Penetrometro Statico)

	Nspt	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
Strato 1	68	10,45	Robertson (1983)	136,00

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	68	10,45	Vesic (1970)	

Modulo di Young

	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm²)
Strato 1	68	10,45	Apollonia	680,00

Classificazione AGI

	Nspt	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato 1	68	10,45	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	68	10,45	Meyerhof ed altri	8,33

Peso unità di volume saturo

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		saturo
				(t/m^3)
Strato 1	68	10,45	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	

Alla profondità compresa tra 14.60 m e 15.00 m dal P.C. si è provveduto al prelievo di un opportuno campione indisturbato, denominato S2C1, successivamente avviato alle analisi di laboratorio. (vedi relazione di laboratorio allegata)

Indagini geofisiche

Le attività di indagini geofisiche hanno previsto l'esecuzione di traverse sismiche con tecnica tomografica e traverse elettriche sempre con tecnica tomografica e indagini MASW.

Quanto alle traverse sismiche sono state eseguite n. 02 stese sismiche denominate RZ1 e RZ2 situate rispettivamente lungo la via Ten. Ernesto Forte e a valle della stessa. Le lunghezze degli stendimenti realizzati sono stati pari a 72 m per RZ1 e 48 m per RZ2,.

Quanto alle 2 indagini MASW denominate MW 1 e MW 2 sono state realizzate parallelamente alle indagini sismiche a rifrazione tomografica e rispettivamente lungo la via Ten. Ernesto Forte e a valle della stessa.

Le indagini n tomografia elettrica denominate ERT1 e ERT2, anch'esse sono state realizzate lungo la via Ten. Ernesto forte e a valle della stessa, le lunghezze degli stendimenti sono stati pari a 126 m per ERT1 e 69 metri per ERT2.

Indagini geotecniche di laboratorio

Le attività di indagine analitica di laboratorio comprendono analisi di riconoscimento fisico del campione, quali analisi granulometriche e limiti di consistenza e analisi di tipo meccanico, quali prove di taglio diretto e prove edometriche. Alla presente relazione faranno seguito i certificati di prova relativi alle analisi eseguite.

Documentazione fotografica

Foto postazione indagine geognostica S1

Foto cassetta catalogatrice S1 - C1

Foto cassetta catalogatrice $\,$ S1 - C2

Foto cassetta catalogatrice S1 - C3

Foto postazione indagine geognostica S2

Foto cassetta catalogatrice S2-C1

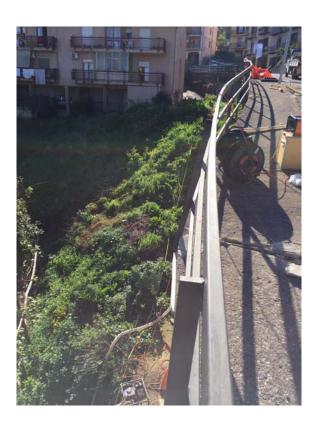
Foto cassetta catalogatrice $\,$ S2 - C2

Foto cassetta catalogatrice S2 - C3

Indagine sismica RZ1

Indagine Masw Mw1

Indagine sismica RZ2



Indagine Masw Mw2

Indagine Tomografia elettrica ERT1

Indagine Tomografia elettrica ERT2

Gibellina lì 31/12/2016

Geo 3 s. a. s. di A.Ardagna & C.

via A.Burri , 4 91.024 - Gibellina, TP

Committente Comune di Castelbuono (PA)	Profondità raggiunta	Quota Ass. P.C.	Certificato nº	Pagina 1/1
Operatore	Indagine Indagini Geotecniche e geognostiche v. Ten. Enersto Forte	Note1		Inizio/Fine Esecuzione 28/12/2016
Responsabile A.Ardagna	Sondaggio S1	Tipo Carotaggio	Tipo Sonda	Coordinate X Y

Responsabile A.Ardagna	Sondaggio S1		Tipo Carotage	gio			Tip	o Sonda			Coordinate X Y
Litologia Descrizione	Quota	%Carotaggio S.P.T. R.Q.D. (n° Colpi)	Pocket Test kg/cmq	Vane Test kg/cmq	Campioni	Metodo Perforazione	Metodo Stabilizzaz.	Cass. Catalog.	Falda	Altre prove	Piezometro (P) o Inclinometro (I) Piezometro (P) o Inclinometro (I) P-(1)
Argilla, di colore marrone tabacco, a stro brecciata debolmente limosa e plastica, intercalata a vari livelli a porzioni argiliti (3.30 - 3.80 m) (4.50 - 5.10 m) Argilla, di colore grigio, debolmente coe plastica, a struttura brecciata. Intercalat vari livelli a porzioni maggiormente argili con elementi decimetriche Argilla, di colore grigio, debolmente coe plastica, a struttura brecciata. Intercalat vari livelli a porzioni maggiormente argili con elementi decimetriche 10 11 12 13 14 15 16 17 18 19 20	siva e ta a		Podd %	Varian Fajar	7.20 S S S S S S S S S S S S S S S S S S S	(CS) 15.00	Mete Sabibility (Sabibility (S	3 15.00		Array	P-(1) A 15.00

Geo 3 s. a. s. di A.Ardagna & C.

via A.Burri , 4 91.024 - Gibellina, TP

Committente Comune di Castelbuo	ono (PA)	Profondità raggiunta	Quota Ass. P.C.	Certificato nº	Pagina 1/1
Operatore		Indagine Indagini Geotecniche e geognostiche v. Ten. Enersto Forte	Note1		Inizio/Fine Esecuzione 30/12/2016
Responsabile		Sondaggio	Tipo Carotaggio	Tipo Sonda	Coordinate X Y

R A	esponsabile Ardagna	Sondaggio S2				Tipo Carotag	gio			Tip	o Sonda			Coordinate X Y	
	Litologia	Descrizione	Quota	%Carotaggio	S.P.T.							Falda		Piezometro (P) o Inclinometro (I)	
<u>la</u>				R.Q.D.	(nº Colpi)	Pocket Test kg/cmq	Vane Test kg/cmq	Campioni	Metodo Perforazione	Metodo Stabilizzaz.	ss. log.		Altre prove	Aftre prove	
Scala				0 20 40 60 80 100		Pocke kg/c	Van kg/c	J	Met	Metr	Cass. Catalog.		Altre	<u> </u>	
	ala X, Qala X }\$y ⊕ (j\$) (0	terreno agrario		1 1 1 1 1 1											
	Costa Cos	Argilla, di colore marrone tabacco, con	0.80												
1		struttura brecciata, debolmente limosa e													
		plastica, mediamente coesiva. Intercalata a vari livelli a porzioni argillitiche (8.50 - 8.80 m)													
2		(10.50 - 10.80 m)													
3															
4															
5															
ľ															
6															
0															
7															
8															
9															
					30/32/36										
10					10.00 PC	3									
11			11.40												
		Argilla, di colore grigio, debolmente coesiva e plastica, a struttura brecciata intercalata a vari	11110												
12		livelli a porzioni maggiormente argillitiche con elementi decimetrici (13.20- 13.40 m)													
		() ()													
13															
14															
								14.60							
15			15.00					15.00	(CS) 15.00		3 15.00				
									13.00		15.00				
16															
17	A														
1															
10															
18															
19															
20															
	-	O Octorbora, M. Marior, D. Dimanogaiato, . Re. Dimanogaiato da S	1				-		1						=

Campioni: S-Pareti Sottili, O-Osterberg, M-Mazier, R-Rimaneggiato , Rs-Rimaneggiato da SPT Piezometro: ATA-Tubo Aperto, CSG-Casagrande Perforazione: CS-Carotiere Semplice, CD-Carotiere Doppio, EC-Elica Continua Stabilizzazione: RM-Rivestimento Metallico, FB-Fanghi Betonitici Prove SPT: PA-Punta Aperta, PC-Punta Chiusa

PROVA PENETROMETRICA DINAMICA

Committente: Comune di Castelbuono Cantiere: via Ten. Ernesto Forte Località: Castelbuono (PA)

Caratteristiche Tecniche-Strumentali Sonda: PROVE SPT IN FORO

Rif. Norme	DIN 4094
Peso Massa battente	63,5 Kg
Altezza di caduta libera	0,76 m
Peso sistema di battuta	4,2 Kg
Diametro punta conica	50,46 mm
Area di base punta	20 cm ²
Lunghezza delle aste	1 m
Peso aste a metro	7 Kg/m
Profondità giunzione prima asta	0,80 m
Avanzamento punta	0,30 m
Numero colpi per punta	N(30)
Coeff. Correlazione	1
Rivestimento/fanghi	No

OPERATORE RESPONSABILE Dott. geol. A. Ardagna

PROVE PENETROMETRICHE DINAMICHE CONTINUE (DYNAMIC PROBING) DPSH – DPM (... scpt ecc.)

Note illustrative - Diverse tipologie di penetrometri dinamici

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi δ) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M
- altezza libera caduta H
- punta conica: diametro base cono D, area base A (angolo di apertura α)
- avanzamento (penetrazione) δ
- presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente):

- tipo LEGGERO (DPL)
- tipo MEDIO (DPM)
- tipo PESANTE (DPH)
- tipo SUPERPESANTE (DPSH)

Classificazione ISSMFE dei penetrometri dinamici:

Tipo	Sigla di riferimento	peso della massa	prof.max indagine battente
		M (kg)	(m)
Leggero	DPL (Light)	M ≤10	8
Medio	DPM (Medium)	10 <m <40<="" td=""><td>20-25</td></m>	20-25
Pesante	DPH (Heavy)	40≤M <60	25
Super pesante (Super	DPSH	M≥60	25
Heavy)			

penetrometri in uso in Italia

In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello Standard ISSMFE):

- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE) massa battente M=30~kg, altezza di caduta H=0.20~m, avanzamento $\delta=10~cm$, punta conica

(α=60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;

- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE) massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento δ = 10 cm, punta conica (α= 60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;
- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE) massa battente M = 73 kg, altezza di caduta H=0.75 m, avanzamento δ =30 cm, punta conica (α = 60°). diametro D = 50.8 mm, area base cono A=20.27 cm² rivestimento: previsto secondo precise indicazioni;
- DINAMICO SUPERPESANTE (Tipo EMILIA) massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento δ=20-30 cm, punta conica conica $60^{\circ}-90^{\circ}$) diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico : talora previsto.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$Nspt = \beta_t N$$

Dove:

 $(\alpha =$

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

M = peso massa battente;

M' = peso aste;

Η = altezza di caduta;

A = area base punta conica;

δ = passo di avanzamento.

Valutazione resistenza dinamica alla punta Rpd

Formula Olandesi

$$Rpd = \frac{M^{2} \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^{2} \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

Rpd = resistenza dinamica punta (area A); = infissione media per colpo (δ/N); M = peso massa battente (altezza caduta H); P = peso totale aste e sistema battuta.

Metodologia di Elaborazione.

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della *GeoStru Software*.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini 1983 - Meyerhof 1956 - Desai 1968 - Borowczyk-Frankowsky 1981.

Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

Valutazioni statistiche e correlazioni

Elaborazione Statistica

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

Media + s

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Media - s

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Pressione ammissibile

Pressione ammissibile specifica sull'interstrato (con effetto di riduzione energia per svergolamento aste o no) calcolata

secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che corrisponde ad un coefficiente di sicurezza standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 mt. ed immorsamento d = 1 mt..

Correlazioni geotecniche terreni incoerenti

Liquefazione

Permette di calcolare utilizzando dati Nspt il potenziale di liquefazione dei suoli (prevalentemente sabbiosi).

Attraverso la relazione di SHI-MING (1982), applicabile a terreni sabbiosi, la liquefazione risulta possibile solamente se Nspt dello strato considerato risulta inferiore a Nspt critico calcolato con l'elaborazione di SHI-MING.

Correzione Nspt in presenza di falda

Nspt corretto = $15 + 0.5 \times (Nspt - 15)$

Nspt è il valore medio nello strato

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

Angolo di Attrito

• Peck-Hanson-Thornburn-Meyerhof 1956 - Correlazione valida per terreni non molli a prof. < 5 mt.; correlazione valida per sabbie e ghiaie rappresenta valori medi. - Correlazione storica molto usata, valevole per prof. < 5 mt. per terreni sopra falda e < 8 mt. per terreni in falda (tensioni < 8-10 t/mq)

Meyerhof 1956 - Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).

Sowers 1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 mt. sopra falda e < 7 mt. per terreni in falda) $\sigma > 5$ t/mq.

De Mello - Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito $<38^{\circ}$.

Malcev 1964 - Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 m. e per valori di angolo di attrito < 38°).

Schmertmann 1977- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %.

Shioi-Fukuni 1982 (ROAD BRIDGE SPECIFICATION) Angolo di attrito in gradi valido per sabbie - sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 mt. sopra falda e > 15 mt. per terreni in falda) σ>15 t/mq.

Shioi-Fukuni 1982 (JAPANESE NATIONALE RAILWAY) Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose .

Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie - sabbie medie e grossolane-ghiaiose (cond. ottimali per prof. > 8 mt. sopra falda e > 15 mt. per terreni in falda) s>15 t/mq.

Meyerhof 1965 - Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5 mt. e con % di limo > 5% a profondità < 3 mt.

Mitchell e Katti (1965) - Correlazione valida per sabbie e ghiaie.

Densità relativa (%)

• Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.

Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Meyerhof (1957).

Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Modulo Di Young (E_V)

• Terzaghi - elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.

- Schmertmann (1978), correlazione valida per vari tipi litologici.
- Schultze-Menzenbach, correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

Modulo Edometrico

- Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia
- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume Gamma

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

Peso di volume saturo

 Bowles 1982, Terzaghi-Peck 1948-1967. Correlazione valida per peso specifico del materiale pari a circa γ = 2,65 t/mc e per peso di volume secco variabile da 1,33 (Nspt = 0) a 1,99 (Nspt = 95)

Modulo di poisson

Classificazione A.G.I.

Potenziale di liquefazione (Stress Ratio)

• Seed-Idriss 1978-1981. Tale correlazione è valida solamente per sabbie, ghiaie e limi sabbiosi, rappresenta il rapporto tra lo sforzo dinamico medio τ e la tensione verticale di consolidazione per la valutazione del potenziale di liquefazione delle sabbie e terreni sabbio-ghiaiosi attraverso grafici degli autori.

Velocità onde di taglio Vs (m/sec)

• Tale correlazione è valida solamente per terreni incoerenti sabbiosi e ghiaiosi.

Modulo di deformazione di taglio (G)

• Ohsaki & Iwasaki – elaborazione valida per sabbie con fine plastico e sabbie pulite.

Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 - 4,0 kg/cmq.

Modulo di reazione (Ko)

• Navfac 1971-1982 - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso .

Resistenza alla punta del Penetrometro Statico (Qc)

Robertson 1983 Qc

Correlazioni geotecniche terreni coesivi

Coesione non drenata

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA 1983.
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt <8, argille limose-siltose mediamente
 plastiche, argille marnose alterate-fessurate.

Terzaghi-Peck (1948). Cu min-max.

• Sanglerat, da dati Penetr. Statico per terreni coesivi saturi, tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità.

- Sanglerat, (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche < 10 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche" di Sanglerat.
- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità, (Cu-Nspt-grado di plasticità).

Schmertmann 1975 Cu (Kg/cmq) (valori medi), valida per argille e limi argillosi con Nc=20 e Qc/Nspt=2.

Schmertmann 1975 Cu (Kg/cmq) (valori minimi), valida per argille NC .

Fletcher 1965 - (Argilla di Chicago). Coesione non drenata Cu (Kg/cmq), colonna valori validi per argille a medio-bassa plasticità.

Houston (1960) - argilla di media-alta plasticità.

- Shioi-Fukuni 1982, valida per suoli poco coerenti e plastici, argilla di media-alta plasticità.
- Begemann.
- De Beer.

Resistenza alla punta del Penetrometro Statico (Qc)

Robertson 1983 Qc

Modulo Edometrico-Confinato (Mo)

- Stroud e Butler (1975) per litotipi a media plasticità, valida per litotipi argillosi a media-medio-alta plasticità da esperienze su argille glaciali.
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP< 20), valida per litotipi argillosi a medio-bassa plasticità (IP< 20) da esperienze su argille glaciali .
- Vesic (1970) correlazione valida per argille molli (valori minimi e massimi).
- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq)-, valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0).
- Buismann- Sanglerat, valida per argille compatte (Nspt <30) medie e molli (Nspt <4) e argille sabbiose (Nspt=6-12).

Modulo Di Young (EY)

• Schultze-Menzenbach - (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P. >15 D'Appollonia ed altri (1983) - correlazione valida per argille sature-argille fessurate.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume Gamma

• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

Peso di volume saturo

• Correlazione Bowles (1982), Terzaghi-Peck (1948-1967), valida per condizioni specifiche: peso specifico del materiale pari a circa G=2,70 (t/mc) e per indici dei vuoti variabili da 1,833 (Nspt=0) a 0,545 (Nspt=28)

PROVA ...SPT1

Strumento utilizzato... Prova eseguita in data Quota PROVE SPT IN FORO 27/01/2017 12,00 mt

Falda non rilevata

Profondità (m)	Nr. Colpi
12,15	20
12,30	27
12,45	31

STIMA PARAMETRI GEOTECNICI PROVA SPT1

TERRENI COESIVI

I LIMILIA C	
Coesione non	drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	58	12,45	Sanglerat	3,86

Qc (Resistenza punta Penetrometro Statico)

	Nspt	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm ²)
Strato 1	58	12,45	Robertson (1983)	116,00

Modulo Edometrico

	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato 1	58	12,45	Vesic (1970)	

Modulo di Young

	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm²)
Strato 1	58	12,45	Apollonia	580,00

Classificazione AGI

	Nspt	Prof. Strato (m)	Correlazione	Classificazione
Strato 1	58	\ /	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato (m)	Correlazione	Peso unità di volume (t/m³)
Strato 1	58	12,45	Meyerhof ed altri	5,14

Peso unità di volume saturo

reso unita di volune saturo						
	Nspt	Prof. Strato	Correlazione	Peso unità di volume		
		(m)		saturo		
				(t/m^3)		
Strato 1	58	12,45	Bowles 1982,			
			Terzaghi-Peck			
			1948/1967			

PROVA ...SPT.2

Strumento utilizzato... Prova eseguita in data Quota PROVE SPT IN FORO 28/01/2017 10,00 mt

Falda non rilevata

Profondità (m)	Nr. Colpi
10,15	30
10,30	32
10,45	36

STIMA PARAMETRI GEOTECNICI PROVA SPT.2

TERRENI COESIVI

Coesione non drenata

	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato 1	68	10,45	Sanglerat	4,52

Qc (Resistenza punta Penetrometro Statico)

e (r r r r r r r r r r				
	Nspt	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
Strato 1	68	10,45	Robertson (1983)	136,00

Modulo Edometrico

TOWARD ENGINEERING					
	Nspt	Prof. Strato	Correlazione	Eed	
		(m)		(Kg/cm ²)	
Strato 1	68	10,45	Vesic (1970)		

Modulo di Young

	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato 1	68	10,45	Apollonia	680,00

Classificazione AGI

	Nspt	Prof. Strato (m)	Correlazione	Classificazione
Strato 1	68	()	Classificaz. A.G.I.	ESTREM.
			(1977)	CONSISTENTE

Peso unità di volume

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato 1	68	10,45	Meyerhof ed altri	8,33

Peso unità di volume saturo

	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		saturo
				(t/m^3)
Strato 1	68	10,45	Bowles 1982,	
			Terzaghi-Peck	
			1948/1967	

Laboratorio di Indagini Geotecniche sui terreni

Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010

OGGETTO DEI LAVORI

INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE

COMMITTENTE

Comune di Castelbuono

Rif. Verb. di accettazion	ne n°	551	
Rif. Interno nº	53/16	\neg	

RISULTATI DELLE PROVE GEOTECNICHE DI LABORATORIO

Rif. Verb. N° 551

Oggetto dei lavori:

INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE

Nell'ambito dei lavori inerenti la campagna di indagini geognostiche in oggetto, il committente, Comune di Castelbuono

ha incaricato formalmente la Società <u>GEO 3 s.a.s. di Antonino Ardagna & C.</u> per l'esecuzione di prove geotecniche su campioni di terreno opportunamente prelevati. Sono, infatti, pervenuti presso codesto laboratorio i seguenti campioni:

N° 2 fustelle metalliche denominate S1C1 e S2C1 N° 5 sacchetto plastico

I campioni risultano essere opportunamente sigillati onde evitarne l'essiccazione e marcati da etichetta identificatrice.

Dopo l'apertura del campione, è stato possibile identificare lo stesso e classificarlo dal punto di vista macroscopico; in seguito a tale identificazione si è proceduto alla selezione delle porzioni necessarie per la caratterizzazione fisica e meccanica.

Nello specifico sono state eseguite le seguenti prove:

- determinazione del contenuto di acqua del campione ASTM D 2216-80;
- determinazione del peso per unità di volume BS 1377;
- determinazione del peso specifico ASTM D 854;
- granulometrica mediante sedimentazione (aerometria) e/o setacciatura ASTM D 422;
- determinazione dei limiti di Atterberg ASTM D 4318
- prova di consolidazione edometrica ASTM D 2435;
- prova di taglio diretto ASTM D 3080;
- determinazione del limite di ritiro ASTM D 427 04.

Di seguito vengono riportati i certificati da campioni pervenuti in questo laboratorio.

01/17 a

a _

02/17 f

con riferimento ai

Gibellina, gennaio-17

Laboratorio di Indagini Geotecniche sui terreni

Il direttore di Laboratorio

Dott. Geol. Antonino Ardagna

<u>551</u>

Rif. Verbale di accettazione n°

SCHEDA CAMPIONE

S1 C1

 Rif. interno n°
 53/16

 Certificato n°
 01/17 a

 Data emissione
 12/01/2017

 n° pagine 1 / 23

Committent	е	Comune di Ca	stelbuono					
Direttore La	vori	-	Località:		Cas	telbuon	o (PA)	
Oggetto:	INDAGINI G	EOTECNICHE-	GEOGNOSTIC	HE DA EFF	ETTUARE NEL TR	RATTO	VIA TEN. ERNEST	TO FORTE
Sondaggio		S1	Campione			C1		
Profondità	7,20-7,60	metri p.c.	Contenitore			Fust	tella metallica	
Data prelie	evo campione	27-dic-16	Data acce	ttazione	30-dic-16	Da	ta inizio prove	02-gen-17
	del campione				-ttt	0:		: !!: !!!
		cco con presenz lore giallastro. L			struttura brecciata.	. Si pos	sono rinvenire, a v	arı iiveiii,
Cla	acco di qualità	a Q5		ndisturbat	о		Dimonoggiat	•
Cia	asse di qualità	ı Qo	ı	naisturbat	о <u>х</u>		Rimaneggiate	o <u> </u>
Infissio	ne pocket pe	netrometer	<100 kPa	-	100 <kpa<400< th=""><th>X</th><th>> 400 kPa</th><th>-</th></kpa<400<>	X	> 400 kPa	-
Infissi	ione pocket v	ane - test	4,4	N/cm ²				
Prove effetti	uate							
			data prove				data prove	
Contenuto d'	'acqua		02/01/2017	Х	Edometria		02/01/2017	х
Peso di volur	me		02/01/2017	Х	Taglio diretto		02/01/2017	х
Peso specific	co dei grani		03/01/2017	Х	Taglio residuo	-		
Limiti di Atter	rberg		04/01/2017	Х	ELL	-		
Limite di ritiro	o -		05/01/2017	Х	Triassiale UU			
Analisi granu	ılometrica (seta	acci)	03/01/2017	Х	Triassiale CU	-		
-	ılometrica (sed	,	09/01/2017	Х	Triassiale CD	-		
-	ılometrica (UN	•			Point Load Test	-		
, maner grant					Perm a car cost.	-		
Compattazio	ne Proctor mod	dificato			Perm. a car var	-		
Penetrazione		amouto			Perm in cella tx			
						_		
Grandezze I	ndice							
Contenuto d'	'acqua I W. (%)	12,78		Peso specifico La	/s (kN/n	n ³)	26,59
Contenuto d'acqua I W ₀ (%) Contenuto d'acqua II W ₀ (%)		13,59		Peso specifico I γs (kN/m³) Peso specifico II γs (kN/m³)			26,62	
Contenuto d'acqua medio W ₀ (%) (media 2 determinaz.)		10,00					20,02	
		v ₀ (/0)	13,19		Peso specifico medio γs (kN/m³) (media 2 determinaz.)		(KIV/III)	26,61
Peso di volur	<u>me</u> γ (kN/m³)		19,16		Grado di saturazi	one (S	<u>a)</u> (%)	62,57
		2			Indice dei vuoti (e	<u>e)</u>		0,57
Peso di volur	<u>me secco</u> γd (k	N/m³)	16,93		Porosità %			36,37

CURVA GRANULOMETRICA (ASTM D 421 / 422)

Rif. interno n°	53/16
Certificato nº	01/17 b
Data	12/01/2017
n° pagina 2 /	23

Laboratorio Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010

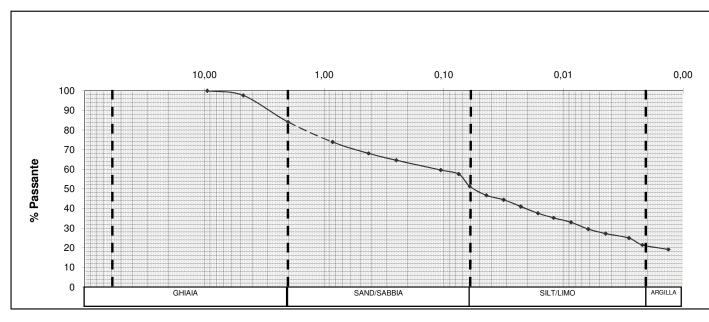
Dati del Cliente

Cantiere

Cliente Comune di Castelbuono

INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE

Sondaggio S1 Campione C1


Profondità 7,20-7,60 m

Il Direttore di Laboratorio

Lo Sperimentatore

Dott. Geol Antonino Ardagna

Dott. Geol. Mendolia Antonio

	acci	Passante
ASTM	mm	%
3"	> 75	
2" 1.5"	>50	
	>37.5	
1"	>25	
3/4"	>19	100,00
3/8"	>9.50	100,00
No 4	>4.75	97,63
No 10	>2.00	84,14
No 16	>1.180	
No 20	>0.850	73,87
No 30	>0.600	
No 40	>0.425	68,14
No 50	>0.300	
No 60	>0.250	64,60
No 100	>0.150	
No 140	>0.106	59,62
No 200	>0.075	57,59
	<0.075	0,01

Descrizione	Ghiaia %	Sabbia %	Limo %	Argilla %	ф 60	ф ₁₀	U
Sabbia con limo, argillosa, ghiaiosa	16	34	30	20	0,106	-	

LIMITI DI ATTERBERG (ASTM D 4318)

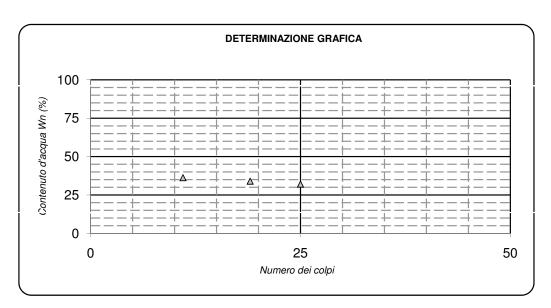
Riferimento n°	53/16
Certificato nº	01/17 c
Data	12/01/2017
n° pagina 3 /	23

Laboratorio Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010

Dati del Cliente

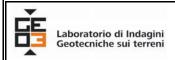
Comune di Castelbuono Cliente

INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. Cantiere:


ERNESTO FORTE

Sondaggio S1 Campione C1 Profondità 7,20-7,60

LIMITE LIQUIDO	PROVINO 1	PROVINO 2	PROVINO 3
NUMERO COLPI	11	19	25
CONTENUTO D'ACQUA %	36,28	34,00	32,09


LIMITE PLASTICO	PROVINO 1	PROVINO 2	PROVINO 3
CONTENUTO D'ACQUA %	19,93	20,30	

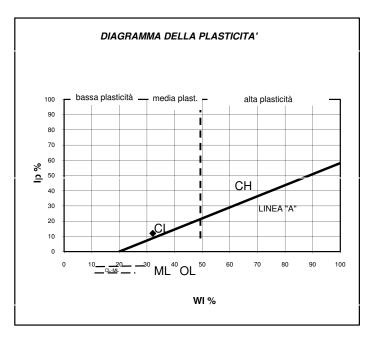
CONTENUTO D'ACQUA (Wn) %	13,19
LIMITE LIQUIDO (WI) %	32,09
LIMITE PLASTICO (Wp) %	20,12
INDICE PLASTICO (Ip) %	11,98
	_
INDICE DI CONSISTENZA (Ic)	1,58

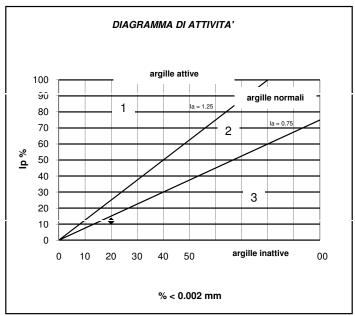
Il Direttore di Laboratorio Dott. Geol Antonino Ardagna

Lo Sperimentatore Dott. Geol. Mendolia Antonio

DIAGRAMMI DI ATTIVITA' E PLASTICITA'

Rif. n°	53/16
Certificato nº	01/17 c
Data	12/01/2017
n° pagina 4 /	23


Laboratorio Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010


Dati del Cliente

Cliente Comune di Castelbuono

Cantiere INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE

Sondaggio S1 Campione C1 Profondità 7,20-7,60 m

LIMITE DI RITIRO (ASTM D 427-04)

Rif. n°	<i>53/16</i>
Certificato n°	01/17 d
Data	12/01/2017
pagina 5 /	<i>23</i>

Laboratorio Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010

Dati del Cliente

Cliente Comune di Castelbuono

Cantiere INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE

Sondaggio **S1** Campione **C1** Profondità 7,20-7,60 m

PESO CAPSULA (gr.)	VOLUME CAPSULA (cm³)	VOLUME CAMPIONE SECCO (cm3)
32,26	25,28	17,59

peso campione umido + TARA (gr.)	peso campione secco + TARA(gr.)
78,64	66,71
UMIDITA' INIZIALE CAMP. (Wi) %	34,63

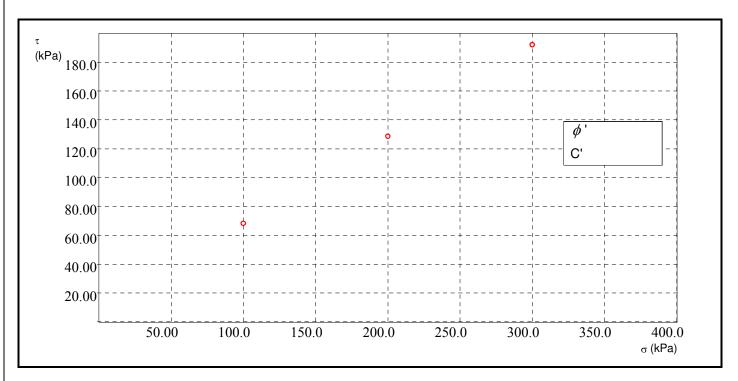
()	•
LIMITE RITIRO (Ws) %	12,31
-	
COEFF. DI RITIRO (Rs) %	1,96
RITIRO DI VOLUME (Vs)	43,72

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE


Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1

Profondità 7.20-7.60 m

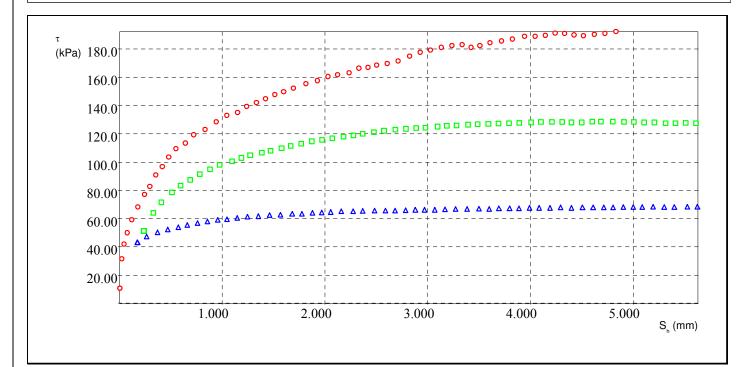
Provino	Ho mm	Ao cm²	γ _n g/cm ³	γ _d g/cm³	Wo %	Wf %	So %	Sf %
5316S11C	20,00	36,00	1,961	1,708	14,81	18,13	68,41	112,70
5316S11B	20,00	36,00	1,962	1,729	13,51	19,32	64,48	104,39
5316S11A	20,00	36,00	1,941	1,718	13,00	20,92	61,00	103,97

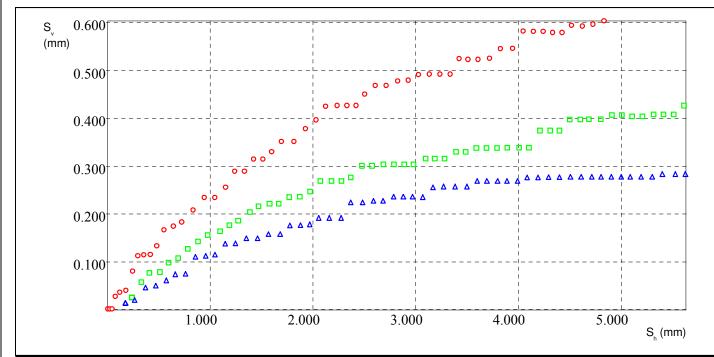
Provino	σ_{v}	Н	dt	τf	Sh	V	
	kPa	mm	h	kPa	mm	micron/min	
5316S11C	300,00	18,10	1,00	192,12	4,33	2,00	
5316S11B	200,00	19,16	1,00	128,68	4,60	2,00	
5316S11A	100,00	19,59	1,00	68,21	4,71	2,00	

Il Direttore del Laboratorio Dott. Geol. Antonino Ardagna Lo Sperimentatore Dott. Geol. Mendolia Antonio

Dati del Cliente

PROVA DI TAGLIO DIRETTO (ASTM D3080)


Cliente Comune di Castelbuono


Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1

Profondità 7.20-7.60 m

Il Direttore del Laboratorio

Lo Sperimentatore

Dott. Geol. Antonino Ardagna

Dott. Geol. Mendolia Antonio

Riferimento n. 53/16 - 12/01/17

Certificato n. 01/17 - e pagina 8/23

PROVA DI TAGLIO DIRETTO (ASTM D3080)

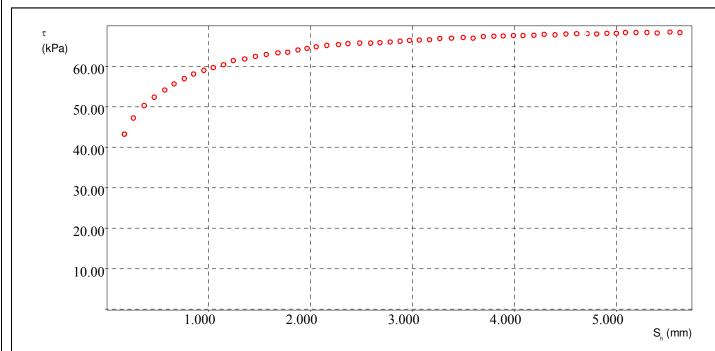
Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1


Profondità 7.20-7.60 m

Risultati di prova

dt	dH	Sh	F	τ
min	mm	mm	N	kPa
100,00	0,01	0,18	155,60	43,22
150,00	0,02	0,26	170,10	47,25
200,00	0,05	0,37	181,00	50,28
250,00	0,05	0,47	188,60	52,39
300,00	0,06	0,57	194,70	54,08
350,00	0,07	0,66	200,30	55,64
400,00	0,08	0,76	205,00	56,94
450,00	0,11	0,86	209,00	58,06
500,00	0,11	0,96	212,30	58,97
550,00	0,12	1,05	214,70	59,64
600,00	0,14	1,15	217,40	60,39
650,00	0,14	1,25	221,00	61,39

dt	dH	Sh	F	τ
min	mm	mm	N	kPa
700,00	0,15	1,35	222,50	61,81
750,00	0,15	1,46	224,70	62,42
800,00	0,16	1,56	226,30	62,86
850,00	0,16	1,68	227,80	63,28
900,00	0,18	1,78	228,50	63,47
950,00	0,18	1,88	230,60	64,06
1000,00	0,18	1,97	231,80	64,39
1050,00	0,19	2,06	233,20	64,78
1100,00	0,19	2,16	234,50	65,14
1150,00	0,19	2,27	235,20	65,33
1200,00	0,22	2,37	236,10	65,58
1250,00	0,22	2,48	236,60	65,72

Lo Sperimentatore: Dott. Geol. Mendolia Antonio

Risultati della fase di rottura

 $\tau_{max} = 68,21 \text{ kPa}$

 $S_h = 4,71 \text{ mm}$

Riferimento n. 53/16 - 12/01/17

Lo Sperimentatore: Dott. Geol. Mendolia Antonio

Certificato n. 01/17 - e pagina 9/23

Customer Data

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Customer Comune di Castelbuono

Address INDAGINI GEOTECNICHE-GEOGNOSTICHE

Site via Ten. Ernesto Forte

Boring S1 Sample C1

Depth 7.20-7.60 m

d+	dH	Sh	F	
dt min	mm	mm	N	kPa
1300,00	0,23	2,59	236,50	65,69
1350,00	0,23	2,68	236,90	65,81
1400,00	0,24	2,78	237,50	65,97
1450,00	0,24	2,88	238,30	66,19
1500,00	0,24	2,97	238,80	66,33
1550,00	0,24	3,07	239,10	66,42
1600,00	0,26	3,17	239,60	66,56
1650,00	0,26	3,27	240,50	66,81
1700,00	0,26	3,38	240,80	66,89
1750,00	0,26	3,50	241,60	67,11
1800,00	0,27	3,60	240,90	66,92
1850,00	0,27	3,69	242,10	67,25
1900,00	0,27	3,80	242,60	67,39
1950,00	0,27	3,89	242,90	67,47
2000,00	0,27	3,99	243,10	67,53
2050,00	0,28	4,08	243,30	67,58
2100,00	0,28	4,19	243,70	67,69
2150,00	0,28	4,29	244,40	67,89
2200,00	0,28	4,40	243,90	67,75
2250,00	0,28	4,51	244,50	67,92
2300,00	0,28	4,61	244,80	68,00
2350,00	0,28	4,71	244,90	68,03
2400,00	0,28	4,81	244,70	67,97
2450,00	0,28	4,91	245,20	68,11
2500,00	0,28	5,00	245,40	68,17
2550,00	0,28	5,09	245,80	68,28
2600,00	0,28	5,19	246,00	68,33
2650,00	0,28	5,30	245,80	68,28
2700,00	0,28	5,40	245,50	68,19
2750,00	0,28	5,52	246,20	68,39
2800,00	0,28	5,62	246,10	68,36
2850,00	0,28	5,73	246,30	68,42

τ

Certificato n. 01/17 - e pagina 10/23

PROVA DI TAGLIO DIRETTO (ASTM D3080)

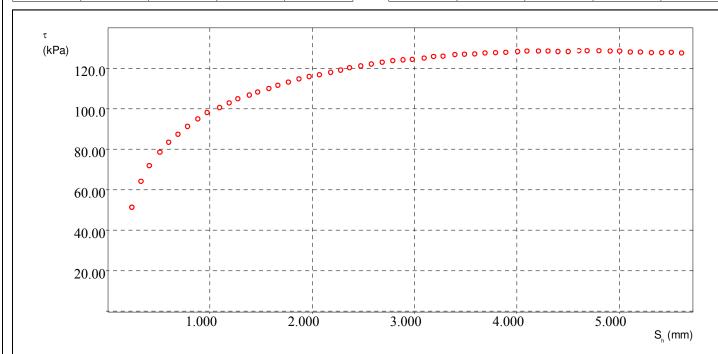
Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1


Profondità 7.20-7.60 m

Risultati di prova

dt	dH	Sh	F	τ
1			i .	kPa
min	mm	mm	N	кга
100,00	0,03	0,24	184,80	51,33
150,00	0,06	0,33	230,80	64,11
200,00	0,08	0,41	258,30	71,75
250,00	0,08	0,51	282,90	78,58
300,00	0,10	0,60	300,50	83,47
350,00	0,11	0,69	314,50	87,36
400,00	0,13	0,78	328,80	91,33
450,00	0,14	0,88	341,90	94,97
500,00	0,16	0,98	353,20	98,11
550,00	0,16	1,09	362,00	100,56
600,00	0,18	1,19	370,40	102,89
650,00	0,19	1,27	377,50	104,86

dt	dH	Sh	F	τ
min	mm	mm	N	kPa
700,00	0,20	1,39	384,50	106,81
750,00	0,22	1,47	389,40	108,17
800,00	0,22	1,58	395,60	109,89
850,00	0,22	1,66	401,80	111,61
900,00	0,24	1,77	407,40	113,17
950,00	0,24	1,87	413,00	114,72
1000,00	0,25	1,97	417,30	115,92
1050,00	0,27	2,07	420,50	116,81
1100,00	0,27	2,18	424,60	117,94
1150,00	0,27	2,28	428,90	119,14
1200,00	0,28	2,37	432,70	120,19
1250,00	0,30	2,48	436,20	121,17

Lo Sperimentatore: Dott. Geol. Mendolia Antonio

Risultati della fase di rottura

 $\tau_{\text{max}} = 128,68 \text{ kPa}$

 $S_h = 4,60 \text{ mm}$

Lo Sperimentatore: Dott. Geol. Mendolia Antonio

Certificato n. 01/17 - e pagina 11/23

Customer Data

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Customer Comune di Castelbuono

Address INDAGINI GEOTECNICHE-GEOGNOSTICHE

Site via Ten. Ernesto Forte

Boring S1 Sample C1

Depth 7.20-7.60 m

dt	dH	Sh	F	
min	mm	mm	N	kPa
1300,00	0,30	2,58	439,70	122,14
1350,00	0,30	2,68	442,60	122,94
1400,00	0,30	2,79	445,40	123,72
1450,00	0,30	2,89	446,80	124,11
1500,00	0,30	2,98	447,70	124,36
1550,00	0,32	3,10	450,50	125,14
1600,00	0,32	3,19	452,70	125,75
1650,00	0,32	3,28	453,90	126,08
1700,00	0,33	3,39	456,00	126,67
1750,00	0,33	3,49	457,00	126,94
1800,00	0,34	3,59	457,60	127,11
1850,00	0,34	3,69	458,90	127,47
1900,00	0,34	3,79	459,60	127,67
1950,00	0,34	3,89	460,30	127,86
2000,00	0,34	4,01	461,30	128,14
2050,00	0,34	4,10	462,30	128,42
2100,00	0,37	4,21	462,30	128,42
2150,00	0,37	4,31	462,60	128,50
2200,00	0,37	4,40	461,80	128,28
2250,00	0,40	4,50	461,50	128,19
2300,00	0,40	4,60	463,00	128,61
2350,00	0,40	4,69	463,00	128,61
2400,00	0,40	4,80	462,90	128,58
2450,00	0,41	4,91	462,60	128,50
2500,00	0,41	5,01	462,60	128,50
2550,00	0,40	5,11	461,20	128,11
2600,00	0,40	5,21	460,90	128,03
2650,00	0,41	5,32	459,90	127,75
2700,00	0,41	5,41	459,70	127,69
2750,00	0,41	5,51	460,10	127,81
2800,00	0,43	5,61	459,20	127,56
2850,00	0,43	5,71	459,20	127,56

τ

Certificato n. 01/17 - e pagina 12/23

PROVA DI TAGLIO DIRETTO (ASTM D3080)

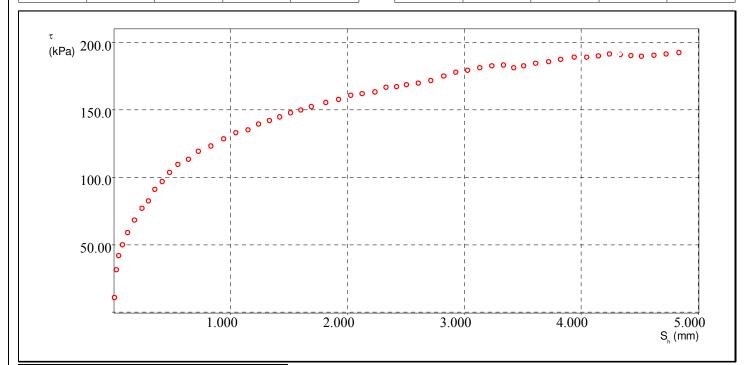
Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1


Profondità 7.20-7.60 m

Risultati di prova

dt	dH	Sh	F	τ
min	mm	mm	N	kPa
100,00	0,00	0,01	38,40	10,67
150,00	0,00	0,02	113,30	31,47
200,00	0,00	0,04	150,60	41,83
250,00	0,03	0,08	179,80	49,94
300,00	0,04	0,12	212,20	58,94
350,00	0,04	0,18	245,20	68,11
400,00	0,08	0,24	277,00	76,94
450,00	0,11	0,30	297,30	82,58
500,00	0,11	0,36	326,90	90,81
550,00	0,12	0,42	348,90	96,92
600,00	0,13	0,48	373,10	103,64
650,00	0,17	0,55	393,40	109,28

dt	dH	Sh	F	τ
min	mm	mm	N	kPa
700,00	0,17	0,64	408,20	113,39
750,00	0,18	0,72	429,20	119,22
800,00	0,21	0,83	443,40	123,17
850,00	0,23	0,94	462,10	128,36
900,00	0,23	1,05	478,80	133,00
950,00	0,26	1,15	486,80	135,22
1000,00	0,29	1,24	502,20	139,50
1050,00	0,29	1,33	511,20	142,00
1100,00	0,31	1,42	521,10	144,75
1150,00	0,31	1,52	531,90	147,75
1200,00	0,33	1,60	539,50	149,86
1250,00	0,35	1,69	548,50	152,36

Lo Sperimentatore: Dott. Geol. Mendolia Antonio

Risultati della fase di rottura

 $\tau_{max} = 192,12 \text{ kPa}$

 $S_h = 4,33 \text{ mm}$

Lo Sperimentatore: Dott. Geol. Mendolia Antonio

Certificato n. 01/17 - e pagina 13/23

Customer Data

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Customer Comune di Castelbuono

Address INDAGINI GEOTECNICHE-GEOGNOSTICHE

Site via Ten. Ernesto Forte

Boring S1 Sample C1

Depth 7.20-7.60 m

-14	-11.1	O.L.		
dt min	dH mm	Sh mm	F N	kPa
1300,00	0,35	1,82	559,50	155,42
1350,00	0,38	1,93	567,50	157,64
1400,00	0,38	2,03	578,30	160,64
1450,00	0,40	2,13	582,50	161,81
1500,00	0,42	2,13	587,40	163,17
				-
1550,00	0,43	2,33	599,20	166,44
1600,00	0,43	2,42	601,30	167,03
1650,00	0,45	2,50	606,60	168,50
1700,00	0,47	2,61	610,50	169,58
1750,00	0,47	2,71	617,40	171,50
1800,00	0,48	2,83	630,00	175,00
1850,00	0,48	2,93	639,50	177,64
1900,00	0,49	3,03	645,40	179,28
1950,00	0,49	3,13	652,10	181,14
2000,00	0,49	3,24	657,30	182,58
2050,00	0,49	3,34	659,30	183,14
2100,00	0,52	3,42	652,40	181,22
2150,00	0,52	3,51	657,40	182,61
2200,00	0,52	3,61	664,00	184,44
2250,00	0,52	3,72	668,30	185,64
2300,00	0,55	3,83	673,80	187,17
2350,00	0,55	3,94	679,90	188,86
2400,00	0,58	4,05	679,90	188,86
2450,00	0,58	4,15	683,20	189,78
2500,00	0,58	4,24	688,70	191,31
2550,00	0,58	4,34	687,90	191,08
2600,00	0,58	4,43	684,20	190,06
2650,00	0,59	4,52	682,10	189,47
2700,00	0,59	4,62	685,40	190,39
2750,00	0,60	4,73	688,00	191,11
2800,00	0,60	4,84	692,30	192,31
2850,00	0,60	4,94	694,80	193,00

τ

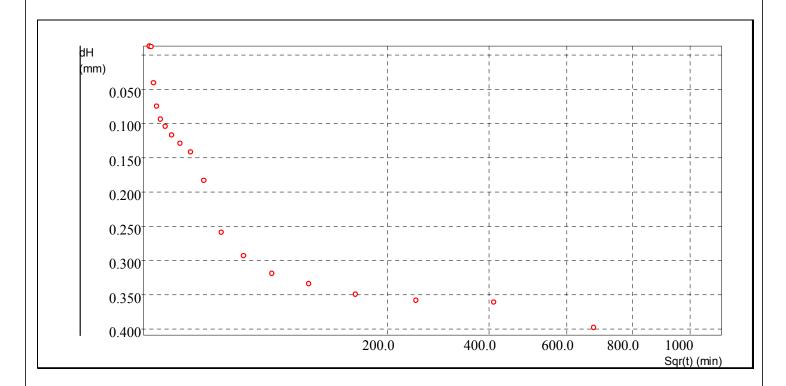
Certificato n. 01/17 - e pagina 14/23

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE


Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1

Profondità 7.20-7.60 m

dt	dH
min	mm
0,13	0,013
0,22	0,012
0,37	0,041
0,60	0,075
1,00	0,094
1,65	0,104
2,73	0,117
4,52	0,129
7,47	0,142
12,33	0,183
20,35	0,259

dH
mm
0,293
0,319
0,334
0,349
0,358
0,361
0,398
0,408

Tempo di fine consolidazione

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

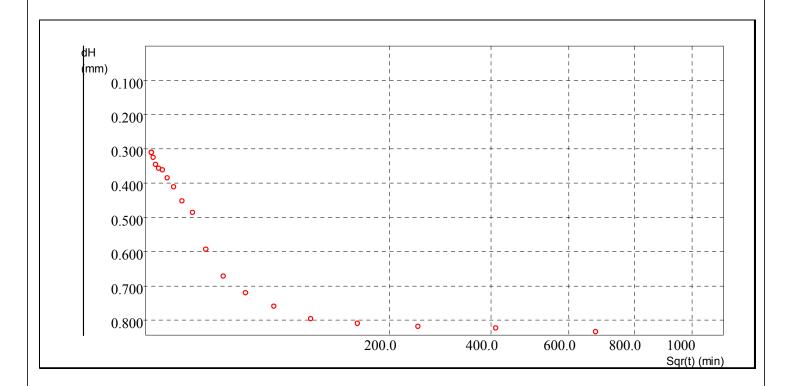
Certificato n. 01/17 - e pagina 15/23

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE


Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1

Profondità 7.20-7.60 m

dt	dH
min	mm
0,13	0,311
0,22	0,325
0,37	0,346
0,60	0,357
1,00	0,361
1,65	0,385
2,73	0,411
4,52	0,452
7,47	0,486
12,33	0,593
20,35	0,671

dH
mm
0,720
0,760
0,796
0,809
0,818
0,823
0,834
0,842

Tempo di fine consolidazione

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

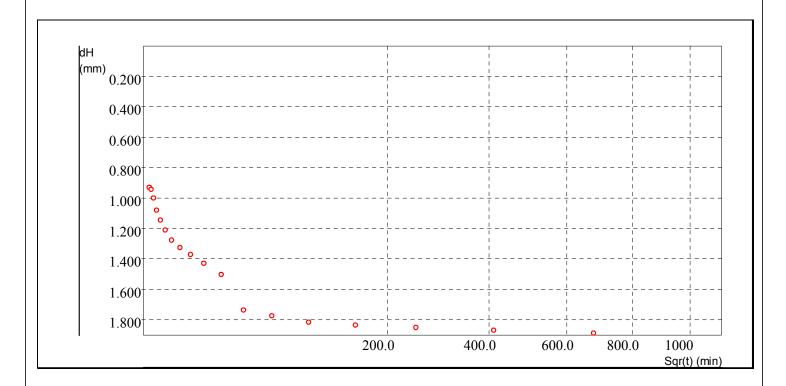
Certificato n. 01/17 - e pagina 16/23

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE


Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1

Profondità 7.20-7.60 m

dt	dH
min	mm
0,13	0,931
0,22	0,945
0,37	1,002
0,60	1,081
1,00	1,145
1,65	1,211
2,73	1,277
4,52	1,326
7,47	1,373
12,33	1,428
20,35	1,503

dΗ
uп
mm
1,738
1,775
1,816
1,836
1,851
1,870
1,889
1,898

Tempo di fine consolidazione

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

PROVA EDOMETRICA (ASTM D2435)

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1

7.20-7.60 m Profondità

Dati del provino

Data del sondaggio	27/12/16		
Sezione	20,000 cm ²	Densità umida iniziale	2,044 g/cm 3 γ_{n}
Altezza iniziale	20,000 mm	Densità umida finale	2,375 g/cm ³ γ ,
Altezza finale	17,641 mm	Densità secca iniziale	1,807 g/cm ³ γ
No. Tara 1	1	Umidità iniziale	13,098 % W
Peso tara 1	58,930 g	Umidità finale	15,892 % W _r
Tara + peso umido iniz.	140,70 g	Saturazione iniziale	71,091 % S _o
No. Tara 2	1	Saturazione finale	133,558 % S _f
Peso tara 2	58,930 g	Indice dei vuoti iniziale	0,499 e ₀
Tara + peso umido fin.	142,720 g	Indice dei vuoti finale	0,322 e ,
Tara + peso secco finale	131,230 g	Densità decca finale	2,049 g/cm 3 γ df
Peso specifico dei grani	2,710 g/cm ³		_ • di

Cedimenti in funzione del tempo

Gradino 01 25,0 kPa		
dt	dH	
min	mm	
0,050	0,146	
0,083	0,157	
0,136	0,159	
0,225	0,159	
0,371	0,160	
0,611	0,160	
1,009	0,161	
1,665	0,161	
2,747	0,161	
4,532	0,161	
7,478	0,161	
12,339	0,161	
20,360	0,161	
0,000	0,000	

Gradino 02 50,0 kPa		
dt	dH	
min	mm	
0,050	0,170	
0,083	0,172	
0,136	0,175	
0,225	0,180	
0,371	0,181	
0,611	0,183	
1,009	0,185	
1,665	0,188	
2,747	0,190	
4,532	0,193	
7,478	0,197	
12,339	0,200	
20,360	0,200	
33,594	0,200	

Gradino 03 100,0 kPa		
dt	dH	
min	mm	
0,050	0,242	
0,083	0,251	
0,136	0,256	
0,225	0,260	
0,371	0,265	
0,611	0,269	
1,009	0,273	
1,665	0,278	
2,747	0,283	
4,532	0,287	
7,478	0,291	
12,339	0,296	
20,360	0,302	
33,594	0,306	

Gradino 04 200,0 kPa		
dt	dH	
min	mm	
0,050	0,447	
0,083	0,467	
0,136	0,479	
0,225	0,489	
0,371	0,494	
0,611	0,506	
1,009	0,518	
1,665	0,522	
2,747	0,530	
4,532	0,540	
7,478	0,545	
12,339	0,550	
20,360	0,558	
33,594	0,566	
•		

ε	0,000	%
е	0,000	
Metodo		
Cv		
Ca		
M		

Risultati

Κ

Risultati		
ε	0,000	%
е	0,000	
Metodo		
Cv		
Ca		
M	0,000	MPa
K		

Risultati			
ε	1,675	%	
е	0,474		
Metodo	Casagrand		
Cv	2,256e-003	cm 7s	
Ca	0,088	%	
M	2,985	MPa	
K	7,414e-010	m/s	
I			

Risultati			
3	3,029	%	
е	0,454		
Metodo	Casagrand		
Cv	2,844e-003	cm /s	
Ca	0,104	%	
M	7,383	MPa	
K	3,778e-010	m/s	

Il Direttore del Laboratorio Dott. Geol. Antonino Ardagna Lo Sperimentatore

PROVA EDOMETRICA (ASTM D2435)

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio Campione C1

7.20-7.60 m Profondità

Dati del provino

Data del sondaggio	27/12/16		
Sezione	20,000 cm ²	Densità umida iniziale	2,044 g/cm 3 γ_{a}
Altezza iniziale	20,000 mm	Densità umida finale	2,375 g/cm 3 $\gamma_{i}^{"}$
Altezza finale	17,641 mm	Densità secca iniziale	1,807 g/cm 3 γ
No. Tara 1	1	Umidità iniziale	13,098 % W
Peso tara 1	58,930 g	Umidità finale	15,892 % W ₁
Tara + peso umido iniz.	140,70 g	Saturazione iniziale	71,091 % S _o
No. Tara 2	1	Saturazione finale	133,558 % S,
Peso tara 2	58,930 g	Indice dei vuoti iniziale	0,499 e ₀
Tara + peso umido fin.	142,720 g	Indice dei vuoti finale	0,322 e ,
Tara + peso secco finale Peso specifico dei grani	131,230 g 2,710 g/cm ³	Densità decca finale	2,049 g/cm 3 γ $_{\mbox{\tiny df}}$

Cedimenti in funzione del tempo

Gradino 05 400,0 kPa		
dt	dH	
min	mm	
0,050	0,838	
0,083	0,848	
0,136	0,862	
0,225	0,890	
0,371	0,908	
0,611	0,917	

dt	dH
min	mm
0,050	0,838
0,083	0,848
0,136	0,862
0,225	0,890
0,371	0,908
0,611	0,917
1,009	0,928
1,665	0,945
2,747	0,963
4,532	0,977
7,478	0,994
12,339	1,001
20,360	1,008
33,594	1,021

Gradino	06	800 O	kPa
Gradino	UU	000,0	nı a

dH
mm
1,347
1,372
1,393
1,419
1,439
1,454
1,480
1,495
1,511
1,527
1,545
1,563
1,580
1,596

Gradino 07 1600,0 kPa

dt	dH
min	mm
0,050	1,745
0,083	1,907
0,136	1,941
0,225	1,964
0,371	1,983
0,611	2,004
1,009	2,020
1,665	2,053
2,747	2,076
4,532	2,105
7,478	2,129
12,339	2,142
20,360	2,160
33,594	2,175

Gradino 08 3200,0 kPa

dt	dH
min	mm
0,050	2,270
0,083	2,326
0,136	2,353
0,225	2,465
0,371	2,501
0,611	2,530
1,009	2,568
1,665	2,596
2,747	2,632
4,532	2,661
7,478	2,684
12,339	2,713
20,360	2,739
33,594	2,761

Risultati

ε	5,321	%
е	0,420	
Metodo	Casagrand	
Cv	2,064e-003	cm /s
Ca	0,098	%
M	8,726	MPa
K	2,320e-010	m/s

Risultati

ε	8,179	%
е	0,377	
Metodo	Casagrand	е
Cv	2,374e-003	cm 3s
Ca	0,083	%
M	13,997	MPa
K	1,664e-010	m/s

Risultati

3	11,125	%
е	0,333	
Metodo	Casagrand	
Cv	1,971e-003	cm 3s
Ca	0,165	%
M	27,161	MPa
K	7,120e-011	m/s
I		

Risultati

ε	14,171	%
е	0,287	
Metodo	Casagrand	
Cv	3,625e-003	cm 3s
Ca	0,232	%
М	52,527	MPa
K	6,769e-011	m/s

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

PROVA EDOMETRICA (ASTM D2435)

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1

7.20-7.60 m Profondità

Dati del provino

Data del sondaggio	27/12/16		
Sezione	20,000 cm ²	Densità umida iniziale	2,044 g/cm 3 γ
Altezza iniziale	20,000 mm	Densità umida finale	2,375 g/cm ³ γ,
Altezza finale	17,641 mm	Densità secca iniziale	1,807 g/cm ³ γ
No. Tara 1	1	Umidità iniziale	13,098 % W
Peso tara 1	58,930 g	Umidità finale	15,892 % W _r
Tara + peso umido iniz.	140,70 g	Saturazione iniziale	71,091 % S _o
No. Tara 2	1	Saturazione finale	133,558 % S _f
Peso tara 2	58,930 g	Indice dei vuoti iniziale	0,499 e ₀
Tara + peso umido fin.	142,720 g	Indice dei vuoti finale	0,322 e ,
Tara + peso secco finale	131,230 g	Densità decca finale	2,049 g/cm 3 γ _{df}
Peso specifico dei grani	2,710 g/cm ³		

Cedimenti in funzione del tempo

Gradino 09 1600,0 kPa	
dt	dH
min	mm

dt	dH
min	mm
0,050	2,832
0,083	2,822
0,136	2,805
0,225	2,778
0,371	2,775
0,611	2,775
1,009	2,773
1,665	2,768
2,747	2,766
4,532	2,763
7,478	2,761
12,339	2,759
20,360	2,756
33,594	2,755

Gradino 10 800,0 kPa

1	
dt	dH
min	mm
0,050	2,732
0,083	2,703
0,136	2,701
0,225	2,695
0,371	2,690
0,611	2,686
1,009	2,678
1,665	2,671
2,747	2,665
4,532	2,663
7,478	2,660
12,339	2,657
20,360	2,652
33,594	2,647

Gradino 11 400,0 kPa

dt	dH
min	mm
0,050	2,596
0,083	2,592
0,136	2,588
0,225	2,585
0,371	2,579
0,611	2,577
1,009	2,572
1,665	2,568
2,747	2,560
4,532	2,550
7,478	2,538
12,339	2,530
20,360	2,525
33,594	2,516

Gradino 12 200,0 kPa

dt	dH
min	mm
0,050	2,466
0,083	2,465
0,136	2,462
0,225	2,461
0,371	2,459
0,611	2,455
1,009	2,447
1,665	2,449
2,747	2,447
4,532	2,437
7,478	2,429
12,339	2,419
20,360	2,412
33,594	2,399

Risultati

cartat	-	
ε	13,761	%
е	0,293	
Metodo		
Cv		
Ca		
M		
K		

Risultati

ε	13,186	%
е	0,302	
Metodo)	
Cv		
Ca		
М		
K		

Risultati

ε	12,497	%
е	0,312	
Metodo		
Cv		
Ca		
М		
K		

Risultati

insuntat		
ε	11,800	%
е	0,322	
Metodo		
Cv		
Ca		
М		
K		

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

Certificato n. 01/17 - f pagina 20/23

Dati del Cliente

PROVA EDOMETRICA (ASTM D2435)

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1

Profondità 7.20-7.60 m

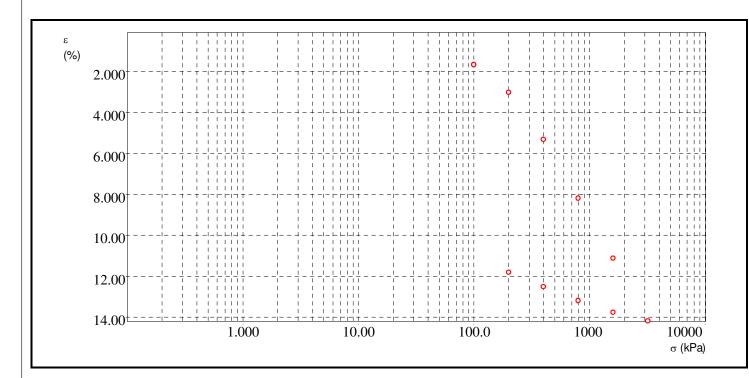
Dati del provino

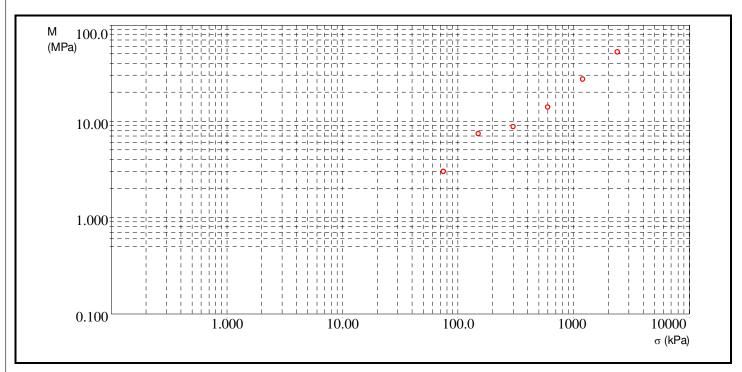
27/12/16		
20,000 cm ²	Densità umida iniziale	2,044 g/cm 3 γ
20,000 mm	Densità umida finale	2,375 g/cm ³ γ,
17,641 mm	Densità secca iniziale	1,807 g/cm ³ γ_d
1	Umidità iniziale	13,098 % W
58,930 g	Umidità finale	15,892 % W _f
140,70 g	Saturazione iniziale	71,091 % S _o
1	Saturazione finale	133,558 % S ₁
58,930 g	Indice dei vuoti iniziale	0,499 e ₀
142,720 g	Indice dei vuoti finale	0,322 e _f
131,230 g	Densità decca finale	2,049 g/cm 3 γ _{df}
	20,000 cm ² 20,000 mm 17,641 mm 1 58,930 g 140,70 g 1 58,930 g 142,720 g	20,000 cm ² Densità umida iniziale 20,000 mm Densità umida finale 17,641 mm Densità secca iniziale Umidità iniziale Umidità finale 58,930 g Saturazione iniziale Saturazione finale Indice dei vuoti iniziale Indice dei vuoti finale Densità decca finale

Gradino	P' kPa	ε %	е	M MPa	Cv cm²/s	K m/s	Metodo	C alfa %
1	25,0	0,000	0,000					0,000
2	50,0	0,000	0,000	0,00				0,000
3	100,0	1,675	0,474	2,99	2,256e-003	7,414e-010	Casagrande	0,088
4	200,0	3,029	0,454	7,38	2,844e-003	3,778e-010	Casagrande	0,104
5	400,0	5,321	0,420	8,73	2,064e-003	2,320e-010	Casagrande	0,098
6	800,0	8,179	0,377	14,00	2,374e-003	1,664e-010	Casagrande	0,083
7	1600,0	11,125	0,333	27,16	1,971e-003	7,120e-011	Casagrande	0,165
8	3200,0	14,171	0,287	52,53	3,625e-003	6,769e-011	Casagrande	0,232
9	1600,0	13,761	0,293					
10	800,0	13,186	0,302					
11	400,0	12,497	0,312					
12	200,0	11,800	0,322					

Il Direttore del Laboratorio Dott. Geol. Antonino Ardagna

PROVA EDOMETRICA (ASTM D2435)


Cliente Comune di Castelbuono


Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1

Profondità 7.20-7.60 m

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

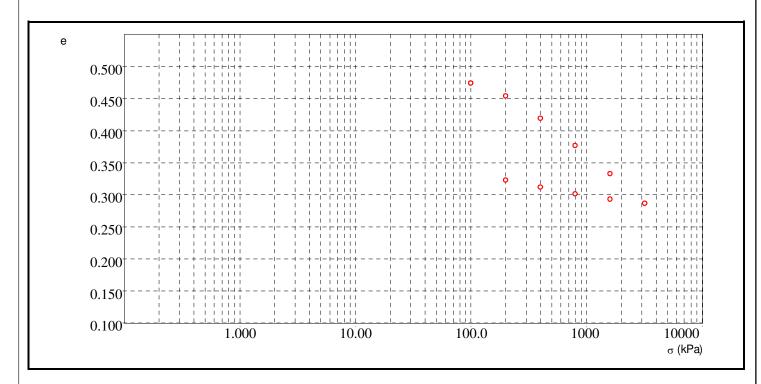
PROVA EDOMETRICA (ASTM D2435)

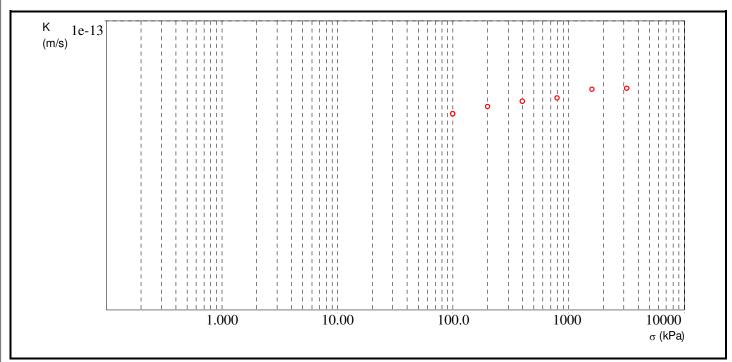
Certificato n. 01/17 - f pagina 22/23

Laboratorio di Indagini Geotecniche sui terreni

Cliente

Dati del Cliente


Comune di Castelbuono


Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1

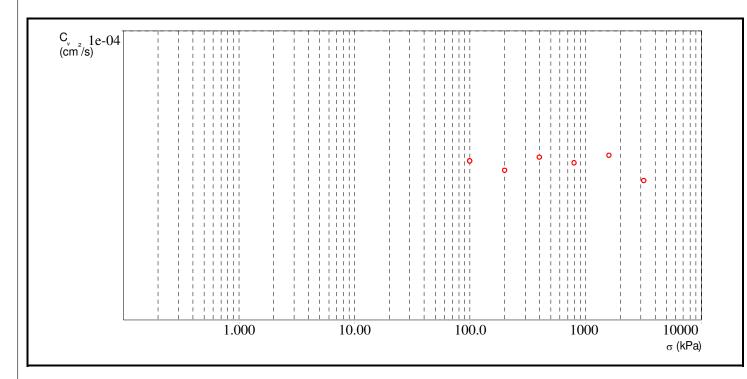
Profondità 7.20-7.60 m

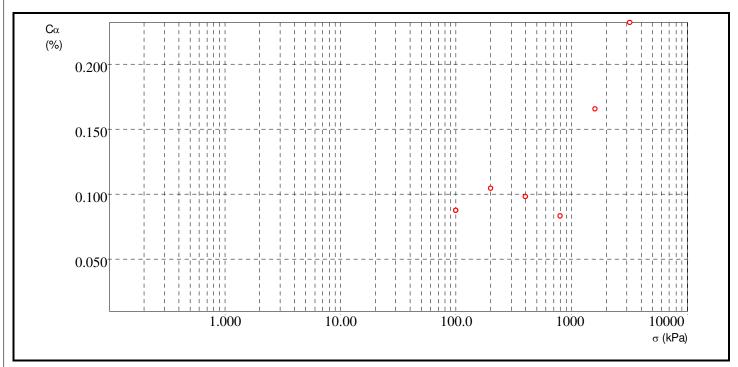
Il Direttore del Laboratorio

Lo Sperimentatore

Dott. Geol. Antonino Ardagna

PROVA EDOMETRICA (ASTM D2435)


Cliente Comune di Castelbuono


Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S1 Campione C1

Profondità 7.20-7.60 m

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

551

Rif. Verbale di accettazione n°

SCHEDA CAMPIONE

S2 C1

 Rif. interno n°
 53/16

 Certificato n°
 02/17 a

 Data emissione
 12/01/2017

 n° pagine 1 / 23

Committente	Comune di Ca	stelbuono				
Direttore Lavori	-	Località:		Cast	elbuono (PA)	
Oggetto: INDAGINI G	EOTECNICHE-	GEOGNOSTIC	CHE DA EFF	ETTUARE NEL TRA	ATTO VIA TEN. ERNES	STO FORTE
Sondaggio	S2	Campione			C1	
Profondità 14,60-15,00	metri p.c.	Contenitore			Fustella metallica	
Data prelievo campione	28-dic-16	Data acc	ettazione	30-dic-16	Data inizio prove	02-gen-17
Descrizione del campione						
Argilla di colore grigio con p plastica.	oresenza di incli	ısı litici di natur	a argillitica d	i dimensioni millime	triche. Umida, coesiva e	e debolmente
Classe di muslità	0.5		lu aliatuuda ata		Dimononaio	
Classe di qualità	a Q5		Indisturbato	о <u> </u>	Rimaneggia	
Infissione pocket pe	netrometer	<100 kPa	-	100 <kpa<400< th=""><th>x > 400 kPa</th><th>-</th></kpa<400<>	x > 400 kPa	-
Infissione pocket v		4,3	N/cm ²		_	
Prove effettuate				-		
		data prove			data prove	
Contenuto d'acqua		02/01/2017	Х	Edometria	02/01/2017	х
Peso di volume		02/01/2017	Х	Taglio diretto	02/01/2017	х
Peso specifico dei grani		03/01/2017	Х	Taglio residuo		
Limiti di Atterberg		03/01/2017	Х	ELL		
Limite di ritiro		04/01/2017	Х	Triassiale UU		
Analisi granulometrica (seta	acci)	03/01/2017	Х	Triassiale CU		
Analisi granulometrica (sed	imentaz.)	09/01/2017	Х	Triassiale CD		
Analisi granulometrica (UN	10006:2002)			Point Load Test		
				Perm a car cost.		
Compattazione Proctor mod	dificato			Perm. a car var		
Penetrazione CBR				Perm in cella tx		
Grandezze Indice						
Contenuto d'acqua I W ₀ (%)	20,85		Peso specifico I ys	s (kN/m³)	26,53
Contenuto d'acqua II W ₀ (%		19,79	ı	Peso specifico II γ	- '	26,53
Contenuto d'acqua medio V	V ₀ (%)		1	Peso specifico me		
(media 2 determinaz.)		20,32		(media 2 determir		26,53
Peso di volume γ (kN/m³)		20,84		Grado di saturazio	one (S ₀) (%)	100
Peso di volume secco γd (k	.N/m³)	17,32	[Indice dei vuoti (e	l	0,53
/d (iii	···· /	,32	l	Porosità %		34,70

CURVA GRANULOMETRICA (ASTM D 421 / 422)

Rif. interno nº	53/16
Certificato n°	02/17 b
Data	12/01/2017
n° pagina 2	? / 23

Laboratorio Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010

Dati del Cliente

Cantiere

Cliente Comune di Castelbuono

INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE

Sondaggio S2 Campione C1

Profondità 14,60-15,00 m

Il Direttore di Laboratorio

Lo Sperimentatore

Dott. Geol Antonino Ardagna

Setacci		Passante
ASTM	mm	%
3"	> 75	
2"	>50	
1.5"	>37.5	
1"	>25	
3/4"	>19	100,00
3/8"	>9.50	98,44
No 4	>4.75	91,43
No 10	>2.00	78,43
No 16	>1.180	
No 20	>0.850	68,73
No 30	>0.600	
No 40	>0.425	63,05
No 50	>0.300	
No 60	>0.250	59,70
No 100	>0.150	
No 140	>0.106	55,10
No 200	>0.075	52,62
	<0.075	0,00

Descrizione	Ghiaia %	Sabbia %	Limo %	Argilla %	ф 60	ф ₁₀	U
Sabbia limosa, ghiaiosa, argillosa	22	32	24	22	0,25	-	

LIMITI DI ATTERBERG (ASTM D 4318)

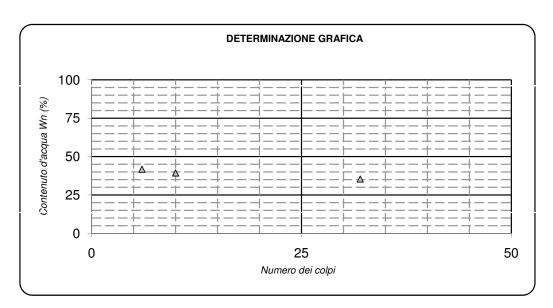
Riferimento n°	53/16
Certificato nº	02/17 c
Data	12/01/2017
n° pagina 3 /	23

Laboratorio Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010

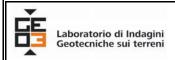
Dati del Cliente

Comune di Castelbuono Cliente

INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. Cantiere:


ERNESTO FORTE

Sondaggio S2 Campione C1 14,60-15,00 Profondità


LIMITE LIQUIDO	PROVINO 1	PROVINO 2	PROVINO 3
NUMERO COLPI	6	10	32
CONTENUTO D'ACQUA %	41,79	39,35	35,41

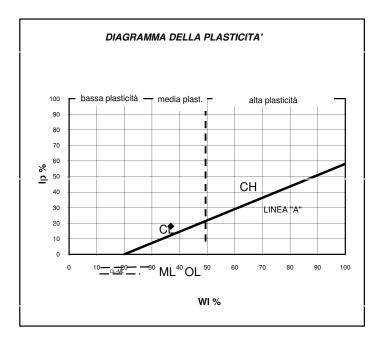
LIMITE PLASTICO	PROVINO 1	PROVINO 2	PROVINO 3
CONTENUTO D'ACQUA %	18,83	18,84	

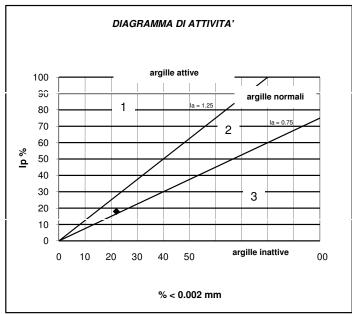
CONTENUTO D'ACQUA (Wn) %	20,32
LIMITE LIQUIDO (WI) %	36,84
LIMITE PLASTICO (Wp) %	18,84
INDICE PLASTICO (lp) %	18,00
INDICE DI CONSISTENZA (Ic)	0,92

Il Direttore di Laboratorio Dott. Geol Antonino Ardagna

DIAGRAMMI DI ATTIVITA' E PLASTICITA'

Rif. n°	53/16
Certificato nº	02/17 c
Data	12/01/2017
n° pagina 4 /	<i>2</i> 3


Laboratorio Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010


Dati del Cliente

Cliente Comune di Castelbuono

Cantiere INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE

Sondaggio S2 Campione C1 Profondità 14,60-15,00 m

LIMITE DI RITIRO (ASTM D 427-04)

Rif. n°	<i>53/16</i>
Certificato n°	02/17 d
Data	12/01/2017
pagina 5 /	23

Laboratorio Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010

Dati del Cliente

Cliente Comune di Castelbuono

Cantiere INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE

Sondaggio **S2** Campione **C1** Profondità 14,60-15,00 m

PESO CAPSULA (gr.)	VOLUME CAPSULA (cm³)	VOLUME CAMPIONE SECCO (cm3)
27,39	20,80	13,58

peso campione umido + TARA (gr.)	peso campione secco + TARA(gr.)
64,96	54,74
UMIDITA' INIZIALE CAMP. (Wi) %	37,37
LIMITE RITIRO (Ws) %	10,97

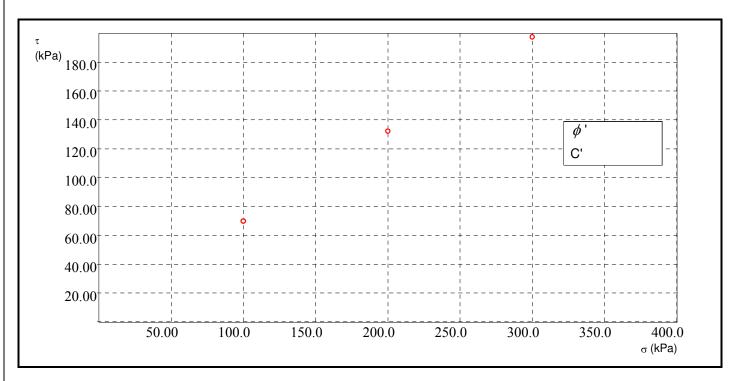
Z Z. T 10 (110) /0	. 5,57
COEFF. DI RITIRO (Rs) %	2,01
RITIRO DI VOLUME (Vs)	53,17

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE


Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1

Profondità 14.60-15.00 m

Provino	Ho mm	Ao cm²	γ _n g/cm ³	γ _d g/cm³	Wo %	Wf %	So %	Sf %
5316S21A	20,00	36,00	2,107	1,754	20,14	21,37	100,78	114,25
5316S21C	20,00	36,00	2,119	1,752	20,93	16,57	104,45	110,46
5316S21B	20,00	36,00	2,154	1,790	20,32	20,30	107,96	128,88

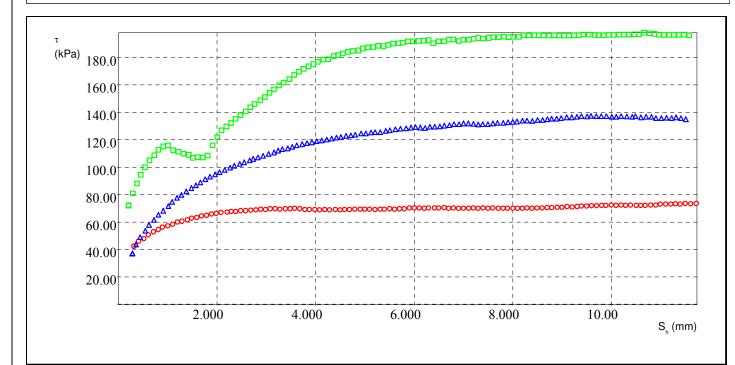
Provino	σν	Н	dt	τf	Sh	V	
	kPa	mm	h	kPa	mm	micron/min	
5316S21A	100,00	19,55	1,00	69,75	3,66	2,00	
5316S21C	300,00	18,24	1,00	197,52	9,52	2,00	
5316S21B	200,00	18,90	1,00	132,37	7,08	2,00	

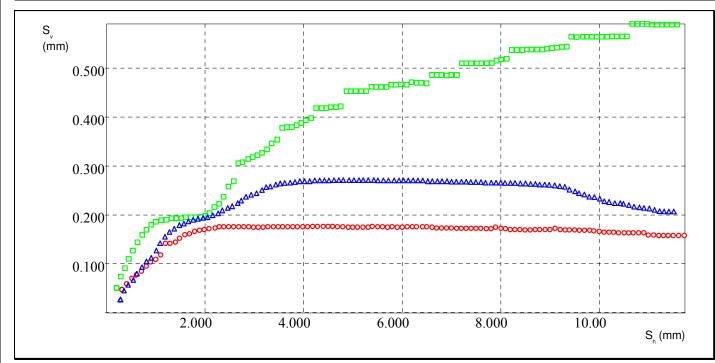
Il Direttore del Laboratorio Dott. Geol. Antonino Ardagna

Certificato n. 02/17 - e pagina 7/23

Dati del Cliente

PROVA DI TAGLIO DIRETTO (ASTM D3080)


Cliente Comune di Castelbuono


Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1

Profondità 14.60-15.00 m

Il Direttore del Laboratorio

Lo Sperimentatore

Dott. Geol. Antonino Ardagna

Certificato n. 02/17 - e pagina 8/23

PROVA DI TAGLIO DIRETTO (ASTM D3080)

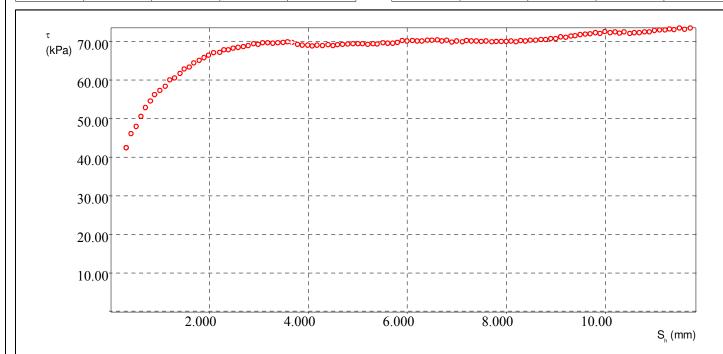
Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1


Profondità 14.60-15.00 m

Risultati di prova

dt min	dH mm	Sh mm	F N	τ kPa
100,00	0,05	0,32	152,60	42,39
150,00	0,06	0,41	165,70	46,03
200,00	0,07	0,51	172,50	47,92
250,00	0,08	0,61	182,10	50,58
300,00	0,08	0,71	190,10	52,81
350,00	0,10	0,81	196,10	54,47
400,00	0,10	0,89	202,10	56,14
450,00	0,11	1,00	205,90	57,19
500,00	0,12	1,10	209,90	58,31
550,00	0,14	1,20	215,80	59,94
600,00	0,14	1,30	217,60	60,44
650,00	0,14	1,40	222,00	61,67

dt	dH	Sh	F	τ
min	mm	mm	N	kPa
700,00	0,15	1,49	226,10	62,81
750,00	0,16	1,59	227,90	63,31
800,00	0,16	1,68	231,60	64,33
850,00	0,17	1,79	234,20	65,06
900,00	0,17	1,89	236,60	65,72
950,00	0,17	1,99	239,00	66,39
1000,00	0,17	2,08	241,20	67,00
1050,00	0,17	2,20	241,70	67,14
1100,00	0,18	2,29	244,00	67,78
1150,00	0,18	2,38	244,00	67,78
1200,00	0,18	2,48	245,40	68,17
1250,00	0,18	2,58	246,10	68,36

Lo Sperimentatore: Dott. Geol. Mendolia Antonio

Risultati della fase di rottura

 $\tau_{\text{max}} = 69,75 \text{ kPa}$

 $S_h = 3,66 \text{ mm}$

Certificato n. 02/17 - e pagina 9/23

Customer Data

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Customer Comune di Castelbuono

Address INDAGINI GEOTECNICHE-GEOGNOSTICHE

Site via Ten. Ernesto Forte

Boring S2 Sample C1

Depth 14.60-15.00 m

dt	dH	Sh	F	
min	mm	mm	N	kPa
1300,00	0,18	2,68	247,10	68,64
1350,00	0,18	2,79	248,10	68,92
1400,00	0,18	2,89	249,90	69,42
1450,00	0,17	2,98	248,90	69,14
1500,00	0,17	3,08	250,40	69,56
1550,00	0,17	3,18	250,40	69,56
1600,00	0,18	3,28	250,00	69,44
1650,00	0,18	3,39	250,40	69,56
1700,00	0,18	3,49	250,70	69,64
1750,00	0,18	3,58	251,40	69,83
1800,00	0,18	3,68	250,80	69,67
1850,00	0,18	3,78	248,90	69,14
1900,00	0,18	3,88	248,50	69,03
1950,00	0,18	3,98	248,50	69,03
2000,00	0,18	4,08	247,70	68,81
2050,00	0,18	4,18	248,50	69,03
2100,00	0,18	4,28	247,90	68,86
2150,00	0,18	4,40	248,80	69,11
2200,00	0,18	4,50	247,90	68,86
2250,00	0,18	4,59	248,60	69,06
2300,00	0,18	4,69	249,00	69,17
2350,00	0,18	4,80	249,30	69,25
2400,00	0,17	4,90	249,90	69,42
2450,00	0,17	5,00	249,60	69,33
2500,00	0,17	5,10	249,80	69,39
2550,00	0,17	5,20	249,10	69,19
2600,00	0,17	5,31	249,60	69,33
2650,00	0,18	5,40	249,30	69,25
2700,00	0,18	5,51	250,60	69,61
2750,00	0,18	5,60	250,10	69,47
2800,00	0,17	5,70	250,30	69,53
2850,00	0,18	5,80	250,90	69,69
2900,00	0,17	5,90	252,60	70,17
2950,00	0,17	6,00	252,30	70,08
3000,00	0,18	6,10	252,50	70,14
3050,00	0,18	6,21	252,10	70,03
3100,00	0,18	6,30	252,30	70,08
3150,00	0,18	6,41	252,90	70,25

τ

Il Direttore di Laboratorio: Dott. Geol. Antonino Ardagna

Certificato n. 02/17 - e pagina 10/23

PROVA DI TAGLIO DIRETTO (ASTM D3080)

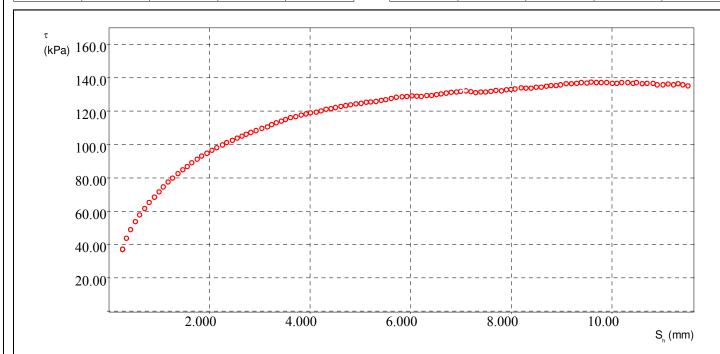
Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1


Profondità 14.60-15.00 m

Risultati di prova

dt	dH	Sh	F	τ
min	mm	mm	N	kPa
100,00	0,03	0,28	133,60	37,11
150,00	0,04	0,36	157,50	43,75
200,00	0,06	0,44	176,30	48,97
250,00	0,07	0,54	193,10	53,64
300,00	0,08	0,62	207,90	57,75
350,00	0,09	0,72	221,60	61,56
400,00	0,10	0,81	234,40	65,11
450,00	0,11	0,91	246,20	68,39
500,00	0,13	1,00	257,30	71,47
550,00	0,14	1,08	268,30	74,53
600,00	0,16	1,19	279,00	77,50
650,00	0,16	1,27	287,10	79,75

dt	dH	Sh	F	τ
min	mm	mm	N	kPa
700,00	0,17	1,38	296,50	82,36
750,00	0,18	1,48	305,00	84,72
800,00	0,18	1,57	312,30	86,75
850,00	0,19	1,66	320,20	88,94
900,00	0,19	1,76	327,80	91,06
950,00	0,19	1,85	334,80	93,00
1000,00	0,19	1,96	341,10	94,75
1050,00	0,20	2,06	347,20	96,44
1100,00	0,20	2,15	353,20	98,11
1150,00	0,20	2,27	358,80	99,67
1200,00	0,21	2,35	363,50	100,97
1250,00	0,21	2,46	368,40	102,33

Lo Sperimentatore: Dott. Geol. Mendolia Antonio

Risultati della fase di rottura

 $\tau_{\text{max}} = 132,37 \text{ kPa}$

 $S_h = 7.08 \text{ mm}$

Laboratorio autorizzato ai sensi del DPR 380/01 art. 59 - n. prot. 5594 del 25/06/2010 Sede Via Alberto Burri n.4, Gibellina (TP) Riferimento n. 53/16 - 12/01/17

Certificato n. 02/17 - e pagina 11/23

Customer Data

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Customer Comune di Castelbuono

Address INDAGINI GEOTECNICHE-GEOGNOSTICHE

Site via Ten. Ernesto Forte

Boring S2 Sample C1

Depth 14.60-15.00 m

dt	dH	Sh	F	
min	mm	mm	N.	kPa
1300,00	0,22	2,55	373,20	103,67
1350,00	0,22	2,66	377,70	104,92
1400,00	0,23	2,74	381,70	106,03
1450,00	0,24	2,83	386,00	107,22
1500,00	0,24	2,94	390,00	108,33
1550,00	0,24	3,04	394,50	109,58
1600,00	0,25	3,16	398,40	110,67
1650,00	0,26	3,24	403,10	111,97
1700,00	0,26	3,33	407,20	113,11
1750,00	0,26	3,44	410,00	113,89
1800,00	0,26	3,52	413,80	114,94
1850,00	0,26	3,61	417,30	115,92
1900,00	0,27	3,72	420,10	116,69
1950,00	0,27	3,82	423,50	117,64
2000,00	0,27	3,92	425,50	118,19
2050,00	0,27	4,02	428,00	118,89
2100,00	0,27	4,13	430,30	119,53
2150,00	0,27	4,23	432,50	120,14
2200,00	0,27	4,32	435,30	120,92
2250,00	0,27	4,42	437,50	121,53
2300,00	0,27	4,51	439,70	122,14
2350,00	0,27	4,61	442,20	122,83
2400,00	0,27	4,72	443,70	123,25
2450,00	0,27	4,81	445,20	123,67
2500,00	0,27	4,92	447,80	124,39
2550,00	0,27	5,02	448,50	124,58
2600,00	0,27	5,12	450,90	125,25
2650,00	0,27	5,21	452,00	125,56
2700,00	0,27	5,32	452,60	125,72
2750,00	0,27	5,42	455,20	126,44
2800,00	0,27	5,51	457,10	126,97
2850,00	0,27	5,62	459,30	127,58
2900,00	0,27	5,72	461,60	128,22
2950,00	0,27	5,83	462,60	128,50
3000,00	0,27	5,93	463,70	128,81
3050,00	0,27	6,03	464,90	129,14
3100,00	0,27	6,13	464,00	128,89
3150,00	0,27	6,22	463,50	128,75

τ

Il Direttore di Laboratorio: Dott. Geol. Antonino Ardagna

Certificato n. 02/17 - e pagina 12/23

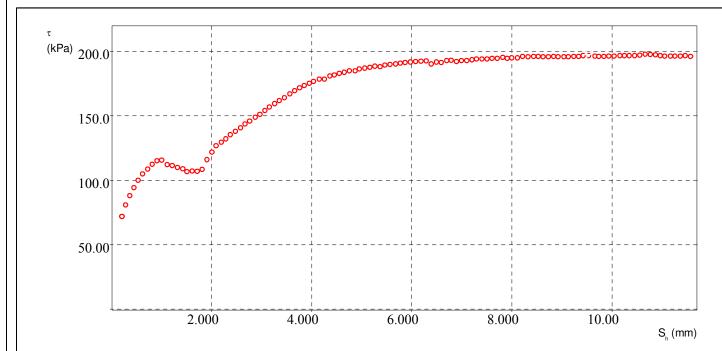
PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte


Sondaggio S2 Campione C1

Profondità 14.60-15.00 m

Risultati di prova

dt	dH	Sh	F	τ
min	mm	mm	N	kPa
100,00	0,05	0,20	259,50	72,08
150,00	0,07	0,29	291,10	80,86
200,00	0,09	0,37	317,10	88,08
250,00	0,11	0,45	340,00	94,44
300,00	0,13	0,53	359,40	99,83
350,00	0,14	0,62	377,30	104,81
400,00	0,16	0,72	391,20	108,67
450,00	0,17	0,81	405,20	112,56
500,00	0,18	0,91	414,70	115,19
550,00	0,19	1,00	417,10	115,86
600,00	0,19	1,11	404,40	112,33
650,00	0,19	1,22	400,60	111,28

dt	dH	Sh	F	τ
min	mm	mm	N	kPa
700,00	0,19	1,32	396,00	110,00
750,00	0,19	1,42	393,00	109,17
800,00	0,19	1,51	384,20	106,72
850,00	0,20	1,61	386,50	107,36
900,00	0,20	1,71	385,30	107,03
950,00	0,20	1,81	390,60	108,50
1000,00	0,20	1,91	417,50	115,97
1050,00	0,20	2,01	439,40	122,06
1100,00	0,20	2,09	457,40	127,06
1150,00	0,22	2,19	466,60	129,61
1200,00	0,22	2,28	476,30	132,31
1250,00	0,24	2,38	487,20	135,33

Risultati della fase di rottura

 $\tau_{\text{max}} = 197,52 \text{ kPa}$

 $S_h = 9,52 \text{ mm}$

Il Direttore di Laboratorio: Dott. Geol. Antonino Ardagna

Certificato n. 02/17 - e pagina 13/23

Customer Data

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Customer Comune di Castelbuono

Address INDAGINI GEOTECNICHE-GEOGNOSTICHE

Site via Ten. Ernesto Forte


Boring S2 Sample C1

Depth 14.60-15.00 m

dt	dH	Sh	F	
min	mm	mm	N	kPa
1300,00	0,26	2,48	496,90	138,03
1350,00	0,27	2,58	507,00	140,83
1400,00	0,31	2,67	517,70	143,81
1450,00	0,31	2,76	525,60	146,00
1500,00	0,31	2,88	535,90	148,86
1550,00	0,32	2,96	544,40	151,22
1600,00	0,32	3,07	555,10	154,19
1650,00	0,33	3,16	564,50	156,81
1700,00	0,33	3,26	574,40	159,56
1750,00	0,35	3,35	582,40	161,78
1800,00	0,35	3,46	591,40	164,28
1850,00	0,38	3,56	602,30	167,31
1900,00	0,38	3,66	610,70	169,64
1950,00	0,38	3,76	618,20	171,72
2000,00	0,38	3,85	624,70	173,53
2050,00	0,39	3,96	630,90	175,25
2100,00	0,39	4,04	636,80	176,89
2150,00	0,40	4,15	643,20	178,67
2200,00	0,42	4,26	643,40	178,72
2250,00	0,42	4,36	651,40	180,94
2300,00	0,42	4,45	654,40	181,78
2350,00	0,42	4,55	658,90	183,03
2400,00	0,42	4,65	662,30	183,97
2450,00	0,42	4,76	665,90	184,97
2500,00	0,45	4,87	666,60	185,17
2550,00	0,45	4,96	671,40	186,50
2600,00	0,45	5,06	674,10	187,25
2650,00	0,45	5,16	675,80	187,72
2700,00	0,45	5,27	678,80	188,56
2750,00	0,46	5,37	677,90	188,31
2800,00	0,46	5,47	682,00	189,44
2850,00	0,46	5,57	684,40	190,11
2900,00	0,46	5,68	685,70	190,47
2950,00	0,47	5,77	687,00	190,83
3000,00	0,47	5,87	690,00	191,67
3050,00	0,47	5,97	690,80	191,89
3100,00	0,47	6,08	691,40	192,06
3150,00	0,47	6,19	692,20	192,28

τ

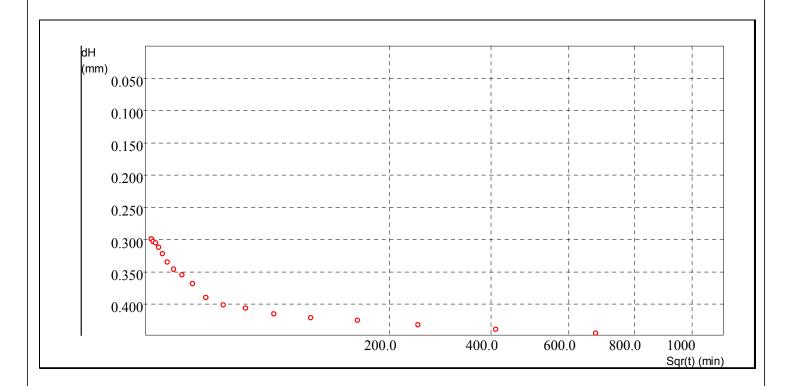
Il Direttore di Laboratorio: Dott. Geol. Antonino Ardagna

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE


Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1

Profondità 14.60-15.00 m

dt	dH
min	mm
0,13	0,299
0,22	0,303
0,37	0,305
0,60	0,312
1,00	0,322
1,65	0,335
2,73	0,346
4,52	0,355
7,47	0,368
12,33	0,390
20,35	0,401

dH
mm
0,406
0,415
0,421
0,425
0,432
0,439
0,445
0,447

Tempo di fine consolidazione

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

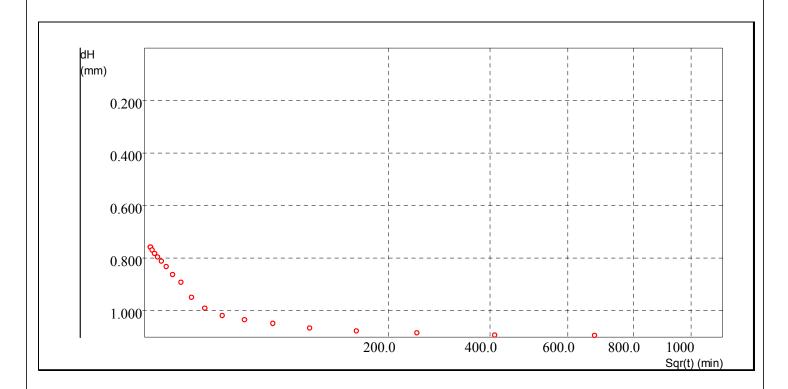
Certificato n. 02/17 - e pagina 15/23

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE


Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1

Profondità 14.60-15.00 m

dt	dH
min	mm
0,13	0,758
0,22	0,769
0,37	0,782
0,60	0,795
1,00	0,811
1,65	0,832
2,73	0,863
4,52	0,892
7,47	0,949
12,33	0,991
20,35	1,018

dH
mm
1,034
1,049
1,065
1,077
1,085
1,093
1,095
1,098

Tempo di fine consolidazione

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

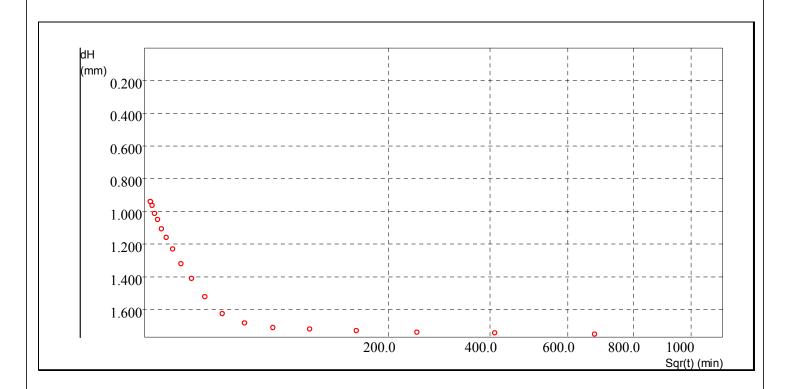
Lo Sperimentatore

PROVA DI TAGLIO DIRETTO (ASTM D3080)

Dati del Cliente

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE


Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1

Profondità 14.60-15.00 m

dt	dH
min	mm
0,13	0,941
0,22	0,964
0,37	1,013
0,60	1,048
1,00	1,106
1,65	1,159
2,73	1,229
4,52	1,319
7,47	1,410
12,33	1,521
20,35	1,625

dt	dH
min	mm
33,58	1,682
55,42	1,710
91,45	1,720
150,90	1,728
248,98	1,739
410,83	1,744
677,88	1,750
1118,52	1,765

Tempo di fine consolidazione

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

PROVA EDOMETRICA (ASTM D2435)

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1

14.60-15.00 m Profondità

Dati del provino

Data del sondaggio	28/12/16		
Sezione	20,000 cm ²	Densità umida iniziale	2,132 g/cm ³ γ
Altezza iniziale	20,000 mm	Densità umida finale	2,393 g/cm ³ γ,
Altezza finale	17,448 mm	Densità secca iniziale	1,780 g/cm 3 γ_d
No. Tara 1	2	Umidità iniziale	19,789 % W
Peso tara 1	58,900 g	Umidità finale	17,303 % W _r
Tara + peso umido iniz.	144,19 g	Saturazione iniziale	103,378 % S _o
No. Tara 2	2	Saturazione finale	144,505 % S _f
Peso tara 2	58,900 g	Indice dei vuoti iniziale	0,517 e ₀
Tara + peso umido fin.	142,420 g	Indice dei vuoti finale	0,323 e ,
Tara + peso secco finale Peso specifico dei grani	130,100 g 2,700 g/cm ³	Densità decca finale	2,040 g/cm 3 γ $_{\text{df}}$

Cedimenti in funzione del tempo

Gradino 01 25,0 kPa		
dt	dH	
min	mm	
0,050	0,080	
0,083	0,084	
0,136	0,091	
0,225	0,092	
0,371	0,092	
0,611	0,092	
1,009	0,095	
1,665	0,097	
2,747	0,103	
4,532	0,107	
7,478	0,111	
12,339 0,115		
20,360	0,120	
33,594 0,121		

adino 02 50,0 kPa	
dt dH	dt
nin mm	min
050 0,149	0,050
083 0,152	0,083
136 0,153	0,136
225 0,155	0,225
371 0,156	0,371
611 0,157	0,611
009 0,158	1,009
0,161	1,665
747 0,162	2,747
532 0,163	4,532
478 0,168	7,478
,339 0,173	12,339
,360 0,175	20,360
,594 0,177	33,594
611 0,157 009 0,158 665 0,161 747 0,162 532 0,163 478 0,168 ,339 0,173 ,360 0,175	0,611 1,009 1,665 2,747 4,532 7,478 12,339 20,360

Gradino 03 100,0 kPa		
dt	dH	
min	mm	
0,050	0,215	
0,083	0,223	
0,136	0,235	
0,225	0,243	
0,371	0,249	
0,611	0,253	
1,009	0,261	
1,665	0,269	
2,747	0,273	
4,532	0,280	
7,478	0,289	
12,339	0,297	
20,360	0,304	
33,594	0,310	

dt	dH
min	mm
0,050	0,411
0,083	0,425
0,136	0,436
0,225	0,450
0,371	0,465
0,611	0,476
1,009	0,483
1,665	0,505
2,747	0,529
4,532	0,540
7,478	0,554
12,339	0,562
20,360	0,571
33,594	0,581

Risultati

ε	0,652	%
е	0,724	
Metodo	Casagrand	е
Cv	9,360e-004	cm 3/s
Ca	0,030	%
M		
K		

Risultati

ε	0,917	%
е	0,719	
Metodo	Casagrand	е
Cv	7,270e-004	cm 7s
Ca	0,019	%
M	9,448	MPa
K	7,546e-011	m/s

Risultati

3	1,725	%
е	0,705	
Metodo	Casagrand	
Cv	8,730e-004	cm 3s
Ca	0,088	%
M	6,185	MPa
K	1,385e-010	m/s
I		

Risultati

·····		
ε	3,119	%
е	0,681	
Metodo	Casagrand	е
Cv	2,508e-003	cm /s
Ca	0,145	%
М	7,174	MPa
K	3,430e-010	m/s
ı		

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

Certificato n. 02/17 - f pagina 18/23

Dati del Cliente

PROVA EDOMETRICA (ASTM D2435)

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1

Profondità 14.60-15.00 m

Dati del provino

Data del sondaggio	28/12/16		
Sezione	20,000 cm ²	Densità umida iniziale	2,132 g/cm 3 γ_{a}
Altezza iniziale	20,000 mm	Densità umida finale	2,393 g/cm ³ γ ,
Altezza finale	17,448 mm	Densità secca iniziale	1,780 g/cm ³ γ
No. Tara 1	2	Umidità iniziale	19,789 % W
Peso tara 1	58,900 g	Umidità finale	17,303 % W _r
Tara + peso umido iniz.	144,19 g	Saturazione iniziale	103,378 % S _o
No. Tara 2	2	Saturazione finale	144,505 % S _f
Peso tara 2	58,900 g	Indice dei vuoti iniziale	0,517 e ₀
Tara + peso umido fin.	142,420 g	Indice dei vuoti finale	0,323 e ,
Tara + peso secco finale Peso specifico dei grani	130,100 g 2,700 g/cm ³	Densità decca finale	2,040 g/cm 3 γ _{df}

Cedimenti in funzione del tempo

Gradino 05 400,0 kPa

dt	dH
min	mm
0,050	0,784
0,083	0,805
0,136	0,814
0,225	0,834
0,371	0,854
0,611	0,874
1,009	0,892
1,665	0,908
2,747	0,922
4,532	0,933
7,478	0,949
12,339	0,962

Gradino	06	0,008	kPa
0			

dt	dH	
min	mm	
0,050	1,283	
0,083	1,313	
0,136	1,338	
0,225	1,360	
0,371	1,378	
0,611	1,415	
1,009	1,432	
1,665	1,457	
2,747	1,496	
4,532	1,521	
7,478	1,539	
12,339	1,565	
20,360	1,583	
33,594	1,589	

Gradino 07 1600,0 kPa

dt	dH
min	mm
0,050	1,778
0,083	1,785
0,136	1,924
0,225	1,948
0,371	1,969
0,611	1,997
1,009	2,028
1,665	2,064
2,747	2,104
4,532	2,149
7,478	2,186
12,339	2,216
20,360	2,244
33,594	2,271

Gradino 08 3200,0 kPa

dt	dH
min	mm
0,050	2,341
0,083	2,388
0,136	2,405
0,225	2,491
0,371	2,561
0,611	2,588
1,009	2,625
1,665	2,672
2,747	2,715
4,532	2,761
7,478	2,793
12,339	2,826
20,360	2,856
33,594	2,881

Risultati

20,360

33,594

3	5,240	%
е	0,644	
Metodo	Casagrando	Э
Cv	2,379e-003	cm 3/s
Ca	0,118	%
M	9,431	MPa
K	2,475e-010	m/s

0,988

1,002

Risultati

ε	8,270	%
е	0,591	
Metodo	Casagrand	е
Cv	1,744e-003	cm 3s
Ca	0,126	%
M	13,198	MPa
K	1,296e-010	m/s

Risultati

ε	11,664	%
е	0,533	
Metodo	Casagrand	
Cv	1,170e-003	cm 3s
Ca	0,116	%
M	23,570	MPa
K	4,868e-011	m/s

Risultati

3	14,774	%
е	0,479	
Metodo	Casagrand	е
Cv	2,899e-003	cm /s
Ca	0,192	%
M	51,453	MPa
K	5,528e-011	m/s

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

PROVA EDOMETRICA (ASTM D2435)

Dati del Cliente Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1

14.60-15.00 m Profondità

Dati del provino

Data del sondaggio	28/12/16		
Sezione	20,000 cm ²	Densità umida iniziale	2,132 g/cm $^{\circ}$ $\gamma_{_{0}}$
Altezza iniziale	20,000 mm	Densità umida finale	2,393 g/cm 3 γ_{f}^{m}
Altezza finale	17,448 mm	Densità secca iniziale	1,780 g/cm ³ γ
No. Tara 1	2	Umidità iniziale	19,789 % W
Peso tara 1	58,900 g	Umidità finale	17,303 % W _f
Tara + peso umido iniz.	144,19 g	Saturazione iniziale	103,378 % $S_{\scriptscriptstyle 0}$
No. Tara 2	2	Saturazione finale	144,505 % S _f
Peso tara 2	58,900 g	Indice dei vuoti iniziale	0,517 e ₀
Tara + peso umido fin.	142,420 g	Indice dei vuoti finale	0,323 e ,
Tara + peso secco finale Peso specifico dei grani	130,100 g 2,700 g/cm ³	Densità decca finale	2,040 g/cm 3 γ $_{\text{\tiny df}}$

Cedimenti in funzione del tempo

Gradino 09	1600,0 kPa

dt	dH
min	mm
0,050	2,952
0,083	2,952
0,136	2,951
0,225	2,928
0,371	2,922
0,611	2,918
1,009	2,915
1,665	2,912
2,747	2,911
4,532	2,909
7,478	2,907
12,339	2,906
20,360	2,905
33,594	2,905
	•

Gradino 10 800,0 kPa

dH
mm
2,887
2,859
2,852
2,847
2,843
2,836
2,832
2,825
2,818
2,815
2,808
2,802
2,798
2,795

Gradino 11 400,0 kPa

dt	dH
min	mm
0,050	2,744
0,083	2,742
0,136	2,741
0,225	2,737
0,371	2,735
0,611	2,731
1,009	2,729
1,665	2,725
2,747	2,719
4,532	2,715
7,478	2,711
12,339	2,706
20,360	2,701
33,594	2,695

Gradino 12 200,0 kPa

dt	dH		
min	mm		
0,050	2,648		
0,083	2,646		
0,136	2,644		
0,225	2,639		
0,371	2,635		
0,611	2,631		
1,009	2,624		
1,665	2,621		
2,747	2,616		
4,532	2,614		
7,478	2,605		
12,339	2,598		
20,360	2,588		
33,594	2,581		

Risultati

ε	14,520	%
е	0,483	
Metodo		
Cv		
Ca		
M		
K		

Risultati

HIJUIL	uu	
3	13,932	%
е	0,493	
Metod	lo	
Cv		
Ca		
M		
K		

Risultati

3	13,405	%
е	0,502	
Metodo		
Cv		
Ca		
M		
K		

Risultati

insuitat	•	
ε	12,764	%
е	0,513	
Metodo		
Cv		
Ca		
M		
K		

Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

Certificato n. 02/17 - f pagina 20/23

PROVA EDOMETRICA (ASTM D2435)

Cliente Comune di Castelbuono

Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1

Profondità 14.60-15.00 m

Dati del provino

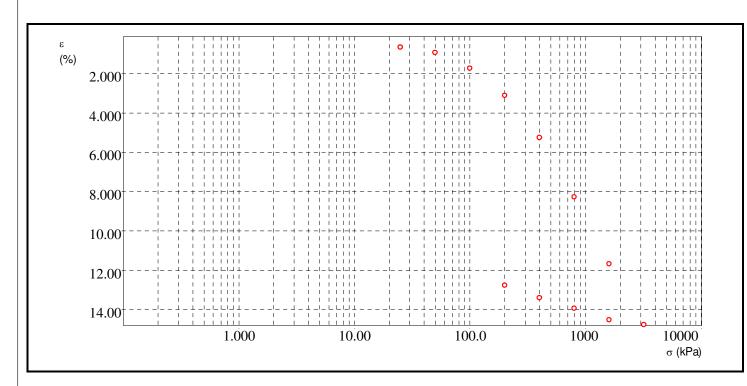
Dati del Cliente

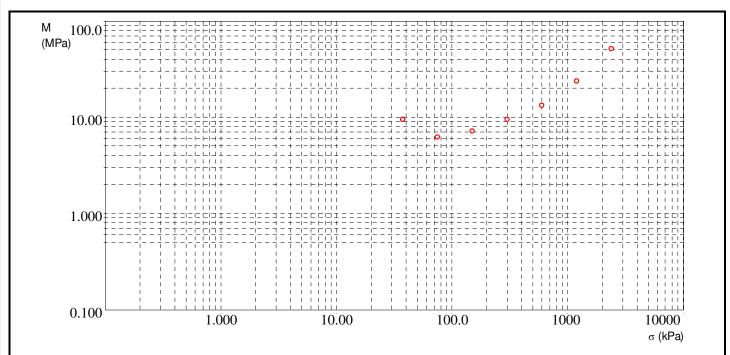
Data del sondaggio	28/12/16		
Sezione	20,000 cm ²	Densità umida iniziale	2,132 g/cm 3 γ_{p}
Altezza iniziale	20,000 mm	Densità umida finale	2,393 g/cm 3 γ_{i}^{m}
Altezza finale	17,448 mm	Densità secca iniziale	1,780 g/cm ³ γ d
No. Tara 1	2	Umidità iniziale	19,789 % W
Peso tara 1	58,900 g	Umidità finale	17,303 % W _f
Tara + peso umido iniz.	144,19 g	Saturazione iniziale	103,378 % S _o
No. Tara 2	2	Saturazione finale	144,505 % S ₁
Peso tara 2	58,900 g	Indice dei vuoti iniziale	0,517 e ₀
Tara + peso umido fin.	142,420 g	Indice dei vuoti finale	0,323 e ,
Tara + peso secco finale Peso specifico dei grani	130,100 g 2,700 g/cm ³	Densità decca finale	2,040 g/cm 3 γ $_{df}$

Gradino	P' kPa	ε %	е	M MPa	Cv cm²/s	K m/s	Metodo	C alfa %
1	25,0	0,652	0,724		9,360e-004		Casagrande	0,030
2	50,0	0,917	0,719	9,45	7,270e-004	7,546e-011	Casagrande	0,019
3	100,0	1,725	0,705	6,19	8,730e-004	1,385e-010	Casagrande	0,088
4	200,0	3,119	0,681	7,17	2,508e-003	3,430e-010	Casagrande	0,145
5	400,0	5,240	0,644	9,43	2,379e-003	2,475e-010	Casagrande	0,118
6	800,0	8,270	0,591	13,20	1,744e-003	1,296e-010	Casagrande	0,126
7	1600,0	11,664	0,533	23,57	1,170e-003	4,868e-011	Casagrande	0,116
8	3200,0	14,774	0,479	51,45	2,899e-003	5,528e-011	Casagrande	0,192
9	1600,0	14,520	0,483					
10	800,0	13,932	0,493					
11	400,0	13,405	0,502					
12	200,0	12,764	0,513					

Il Direttore del Laboratorio Dott. Geol. Antonino Ardagna

PROVA EDOMETRICA (ASTM D2435)


Cliente Comune di Castelbuono


Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

S2 Sondaggio Campione C1

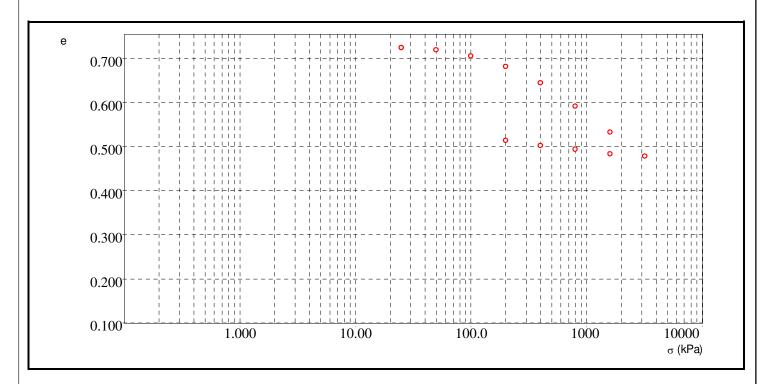
Profondità 14.60-15.00 m

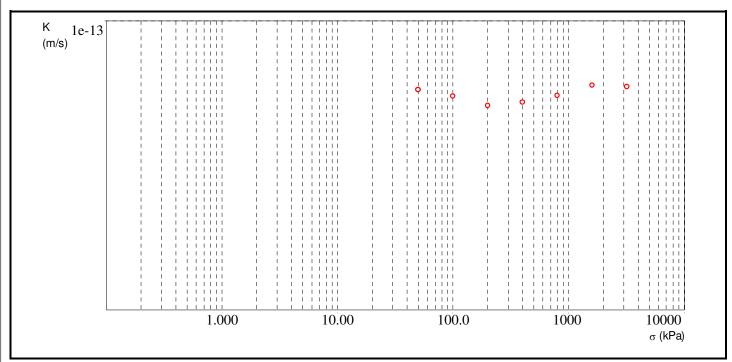
Il Direttore del Laboratorio

Dott. Geol. Antonino Ardagna

Lo Sperimentatore

PROVA EDOMETRICA (ASTM D2435)


Cliente Comune di Castelbuono


Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1

Profondità 14.60-15.00 m

Il Direttore del Laboratorio

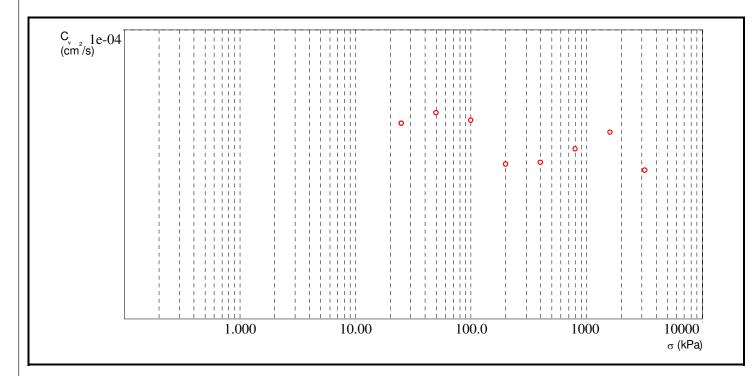
Lo Sperimentatore

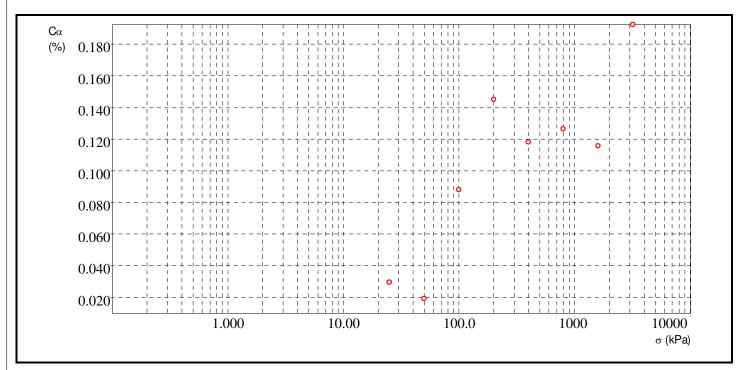
Dott. Geol. Antonino Ardagna

Certificato n. 02/17 - f pagina 23/23

Dati del Cliente

PROVA EDOMETRICA (ASTM D2435)


Cliente Comune di Castelbuono


Indirizzo INDAGINI GEOTECNICHE-GEOGNOSTICHE

Cantiere via Ten. Ernesto Forte

Sondaggio S2 Campione C1

Profondità 14.60-15.00 m

Il Direttore del Laboratorio

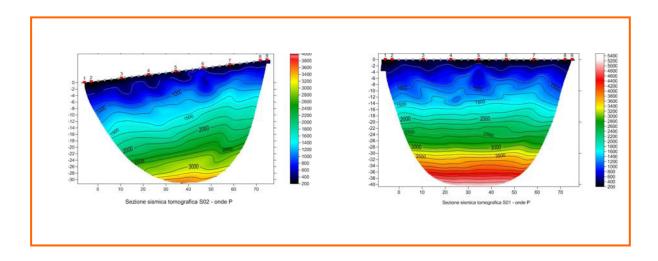
Dott. Geol. Antonino Ardagna

Lo Sperimentatore

Dott. Geol. Mendolia Antonio

Laboratorio di Indagini Geotecniche sui terreni

Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010


OGGETTO DEI LAVORI

INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE

COMMITTENTE

Comune Di Castelbuono (PA)

INDAGINE SISMICA A RIFRAZIONE CON TECNICA **TOMOGRAFICA**

INDICE

- 1. Premessa
- 2. Metodologia sismica a rifrazione
- 3. Strumentazione utilizzata
- 4. Interpretazione dei risultati ottenuti
- 4.1. Analisi dei profili sismici

<u>Allegati</u>

- profili sismo stratigrafici in elaborazione tomografica onde P;
- documentazione fotografica.

1. PREMESSA

Su incarico ricevuto da comune di Castelbuono (PA) è stata eseguita una campagna di indagini sismiche a rifrazione, a supporto dei lavori di "INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE".

Le considerazioni che vengono riportate di seguito sono il risultato delle indagini sismiche effettuate, della verifica e del rilevamento dei litotipi affioranti nell'area in esame ed in una porzione significativamente estesa al contorno.

La campagna di indagine ha previsto l'esecuzione di n° 02 stendimenti di sismica a rifrazione denominati RZ1 e RZ2 con passo geofonico adottato rispettivamente di 3.0 m per RZ1 e 2.0 m per lo stendimento RZ2.

La configurazione geometrica degli stendimenti ha permesso di ottenere profondità medie di indagine dal p.c. di circa 25 m per gli stendimenti RZ1 e di circa 30 m per lo stendimento RZ2.

Ai fini dell'interpretazione dei dati è stata eseguita dapprima una elaborazione mediante metodologia G.R.M., successivamente i segnali filtrati e trattati sono stati elaborati e restituiti con tecnica tomografica, pertanto è stato necessario realizzare almeno n° 09 energizzazioni (o "scoppi") di cui quattro esterni allo stendimento sismico.

La presente metodologia ha permesso di evidenziare semiquantitativamente le geometrie del substrato identificando discontinuità presenti e legate a probabili variazioni litologiche.

Dalle tracce sismiche ottenute, riportate nella presente relazione, sono state estrapolate le velocità delle onde longitudinali (onde P), i cui tempi di arrivo ai vari geofoni sono stati riportati in un grafico che consente di ricavare una correlazione spazio – tempo (dromocrone).

E' stato inoltre eseguito un rilievo plano altimetrico dei geofoni permettendo di tarare la profondità dei rifrattori rispetto al posizionamento dei geofoni stessi.

2. METODOLOGI A SI SMI CA A RI FRAZI ONE

Le indagini geosismiche sono state realizzate avvalendosi del metodo sismico a rifrazione che utilizza la determinazione della velocità di propagazione delle onde longitudinali (onde P) e trasversali (onde S) nel sottosuolo.

Tali onde vengono generate, e si propagano nel terreno, ogni qualvolta quest'ultimo venga sottoposto a sollecitazioni sia di tipo naturale sia artificiale.

Nel caso in esame sono stati creati artificialmente degli impulsi mediante l'utilizzo di una massa battente o energizzatore sismico "mini bang". Quando il suolo viene "energizzato" artificialmente si propagano in esso diversi tipi di onde sismiche, da quelle superficiali di maggiore ampiezza, a quelle più veloci longitudinali (onde P) ed ancora a quelle trasversali (onde S). Per i nostri scopi, sono state utilizzate solamente le onde P.

Mediante questo tipo di indagine si può risalire alla composizione litologica di massima dei terreni con indicazione dei relativi spessori. Un limite, invece, è costituito dal fenomeno di mascheramento dovuto all'impossibilità di rivelare strati a bassa velocità sottostanti a strati con velocità più elevate o, ancora, di riconoscere livelli stratigrafici di spessore esiguo.

La presenza di uno strato a bassa velocità, o di eventuali cavità, introduce errori nella valutazione della profondità dei rifrattori più profondi. Tali errori possono essere corretti mediante punti di taratura ricavati tramite sondaggi geognostici o con altri tipologie di indagini dirette.

3. STRUMENTAZI ONE UTI LI ZZATA

La strumentazione utilizzata è costituita da:

- sismografo Ambrogeo Echo 48/2002 48 canali 24 bit che permette l'acquisizione e rappresentazione degli impulsi sismici su PC consentendo una prima operazione di filtraggio e taratura dei dati in sito; i segnali sismici ottenuti vengono registrati simultaneamente sul disco fisso del PC. Inoltre, lo strumento è dotato di sistema di controllo analogico/digitale dei guadagni con funzione di sommatoria dei segnali sismici che consente di ottimizzare il rapporto segnale-rumore;
- geofoni 10 Hz verticali del tipo elettromagnetico a bobina mobile (con relativo cavo di collegamento a 48 connettori) che consentono di convertire in segnali elettrici gli spostamenti delle onde sismiche all'interno del terreno;
 - cavi sismici ad attacco multipolare muniti di connettori CANNON 60 poli;
- unità esterna di immagazzinamento e memorizzazione dati che permette la verifica dei segnali in situ con possibilità di eventuale trattamento e filtraggio dati .

L' "energizzazione" delle onde di compressione (onde P) nel terreno, è stata realizzata mediante massa battente del peso di 10 kg su apposita piastra metallica opportunamente collocata sullo stesso.

Inoltre laddove problematiche di propagazione del segnale non hanno permesso di individuare chiaramente i treni d'onda ricercati è stata utilizzata una sorgente sismica costituita da un energizzatore (cannoncino Sismico) modello "ISOTTA" calibro 8 debitamente ancorato sul terreno attraverso un preforo realizzato tramite sonda elicoidale manovrata a mano.

Il software di acquisizione e interfaccia dati utilizzato durante l'esecuzione degli stendimenti sismici è AMBROGEO ECHO 48/2012.

4. INTERPRETAZIONE DEI RISULTATI OTTENUTI

L'analisi dei sismogrammi e la successiva rappresentazione grafica dei primi arrivi (onde P) registrati dai geofoni (dromocrone) e dei treni successivi di onde di taglio (onde S), hanno permesso di interpretare i dati ottenuti.

I picking effettuati sulle tracce sismiche (dopo opportuno filtraggio e normalizzazione dei segnali) sono stati trattati dapprima con software Intersism-Geo&soft® utilizzando il metodo GRM; successivamente le tracce acquisite sono state dapprima convertite in formato idoneo all'elaborazione tomografica attraverso software VSCOPE® vers. 2.2.82 quindi poi elaborati con la metodologia predetta attraverso software REYFRACT®; quest'ultimo software utilizza un algoritmo SIRT per la restituzione dei dati.

Nello specifico, mentre il software che si rifà al metodo reciproco generalizzato (G.R.M.) consente di determinare la profondità e le irregolarità dell'interfaccia dei rifrattori non permettendo differenziazioni ulteriori, la metodologia tomografica permette di potere meglio apprezzare variazioni laterali e verticali di velocità utilizzando algoritmi di calcolo più completi rispetto alla metodologia GRM.

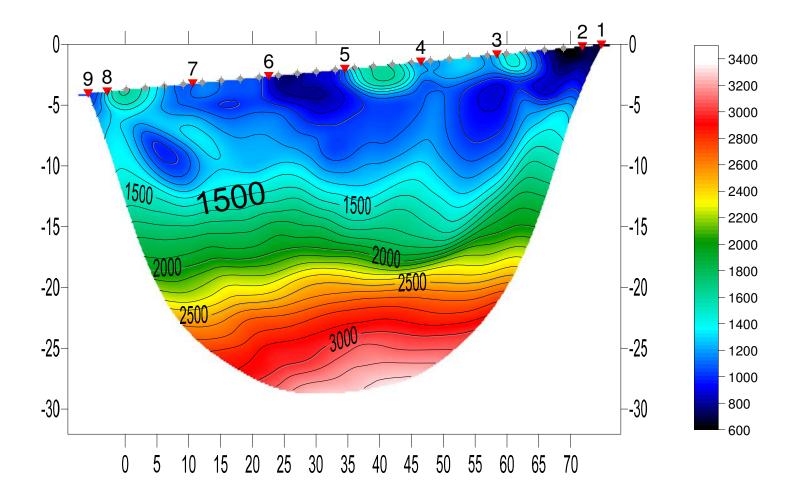
Pertanto l'elaborazione tomografica, a dispetto della metodologia GRM, non permette di definire vere e proprie "superfici" di strati rifrattori, bensì potere apprezzare vere e proprie variazioni graduali di velocità sia lateralmente che verticalmente

4.1 Analisi dei profili sismici

Stendimento sismico a rifrazione RZ1

La restituzione tomografica dei dati, ottenuti sul presente sondaggio, ha permesso di individuare la presenza di quattro unità sismiche di seguito descritte:

- una prima unità sismica superficiale, ad andamento irregolare, riconducibile ad uno spessore di areato superficiale, di medio-bassa consistenza con spessore variabile di circa 5.00 m, con velocità delle onde primarie (ONDE P) compresa tra 400 e 800 m/sec;
- una seconda unità sismica, anch'essa ad andamento irregolare, riconducibile ad una unità sismostratigrafica di media consistenza con uno spessore di circa 7.00 m e avente velocità di propagazione delle onde primarie (ONDE P) compresa tra 800 e 1500 m/sec;
- una terza unità sismica, riconducibile ad una unità sismostratigrafica di medio alta consistenza che si estende fino a circa 20 m dal p.c. e avente velocità di propagazione delle onde primarie (ONDE P) compresa tra 1500 e 2200 m/sec;
- una quarta e ultima unità sismica, riconducibile ad una unità sismostratigrafica di buona consistenza, che si estende fino a 30 m dal p.c. e velocità di propagazione delle onde primarie (ONDE P) variabili tra 2200 e 3000 m/sec.



SCHEDA RIEPILOGATIVA DELL'INDAGINE SISMICA ESEGUITA

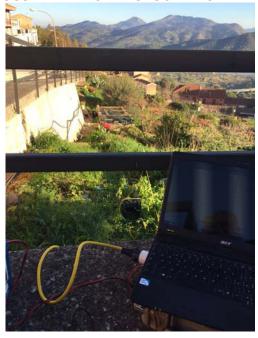
Tipo Prospezione:	SI SMI CA A RI FRAZI ONE	X	DOWN HOLE		MASW
Nome stendimento	RZ1				
Ubicazione					
Strumento utilizzato	AMBROGEO EC	OH	48/ 2012		
Operatore	Geol. A. Ardagna	a – G	eol. A. Mendolia	a	
N° canali utilizzati /bit conversione segnale A/D	48/48				
Geofoni verticali modello/marca	R.T. CLARK a b	obir	na mobile freq	uenz	za 10 Hz
Geofoni orizzontali modello/marca	Xx				
Lunghezza stendimento	192 metri ond	e P +	offset 4m -	8.0 n	n
Interdistanza geofonica onde P	3.0 metri				
Interdistanza geofonica onde S	Xx				
n. tiri eseguiti onde P	09				
n. tiri eseguiti onde S	Xx				
Sistema di energizzazione	Massa battent	e 10	kg, - cannond	ino s	sismico
Lunghezza finestra acquisizione msec	200 msec				
Filtro applicato	500-700 Hz				
Funzioni sommatorie applicate	Si				
Programma utilizzato per acquisizione	Ambrogeo ech	o 48	/ 2010		
Programma utilizzato per elaborazione dati	Intersism (Geo	o⪼	oft) – Vscope 2	2.2.8	2 – Reyfract
Allegati al presente documento	Sezioni interpr	etat	ive onde P		

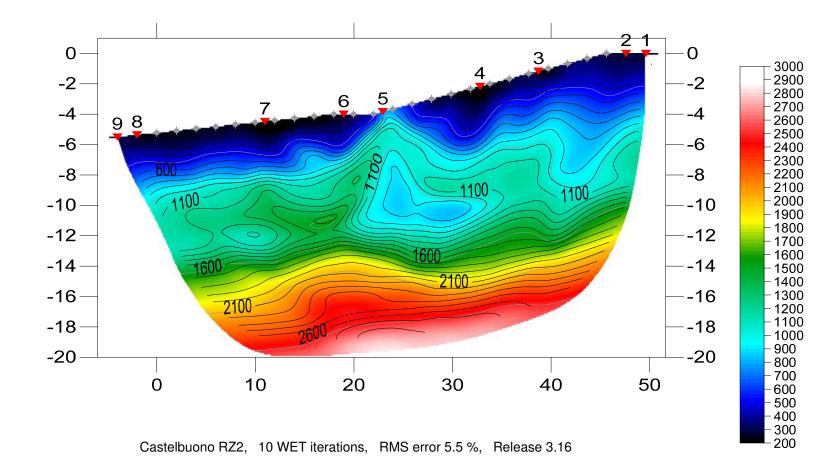
DOCUMENTAZI ONE FOTOGRAFI CA - RZ1-

Castelbuono RZ1, 10 WET iterations, RMS error 5.1 %, Release 3.16

Stendimento sismico a rifrazione RZ2

La restituzione tomografica dei dati, ottenuti sul presente sondaggio, ha permesso di individuare la presenza di quattro unità sismiche di seguito descritte:


- una prima unità sismica superficiale, ad andamento irregolare, riconducibile ad uno spessore di areato superficiale, di medio-bassa consistenza con spessore variabile di circa 5.00/7.00 m, con velocità delle onde primarie (ONDE P) compresa tra 400 e 800 m/sec;
- una seconda unità sismica, anch'essa ad andamento irregolare, riconducibile ad una unità sismostratigrafica di media consistenza con uno spessore di circa 7.00 m e avente velocità di propagazione delle onde primarie (ONDE P) compresa tra 800 e 1500 m/sec;
- una terza unità sismica, riconducibile ad una unità sismostratigrafica di medio alta consistenza che si estende fino a circa 18 m dal p.c. e avente velocità di propagazione delle onde primarie (ONDE P) compresa tra 1500 e 2200 m/sec;
- una quarta e ultima unità sismica, riconducibile ad una unità sismostratigrafica di buona consistenza, che si estende fino a 20 m dal p.c. e velocità di propagazione delle onde primarie (ONDE P) variabili tra 2200 e 2700 m/sec.



SCHEDA RIEPILOGATIVA DELL'INDAGINE SISMICA ESEGUITA

Tipo Prospezione:	SI SMI CA A RI FRAZI ONE	X	DOWN HOLE		MASW	
Nome stendimento	RZ2					
Ubicazione						
Strumento utilizzato	AMBROGEO EC	СНО	48/2012			
Operatore	Geol. A. Ardagna	a – G	eol. A. Mendoli	а		
N° canali utilizzati /bit conversione segnale A/D	48/48					
Geofoni verticali modello/marca	R.T. CLARK a b	obir	a mobile fred	quenz	za 10 Hz	
Geofoni orizzontali modello/marca	Xx					
Lunghezza stendimento	192 metri ond	e P +	offset 4m -	8.0 n	n	
Interdistanza geofonica onde P	4.00 metri					
Interdistanza geofonica onde S	Xx					
n. tiri eseguiti onde P	09					
n. tiri eseguiti onde S	Xx					
Sistema di energizzazione	Massa battent	e 10	kg, - cannon	cino s	sismico	
Lunghezza finestra acquisizione msec	200 msec					
Filtro applicato	500-700 Hz					
Funzioni sommatorie applicate	Si					
Programma utilizzato per acquisizione	Ambrogeo ech	o 48	/ 2010			
Programma utilizzato per elaborazione dati	Intersism (Geo	o⪼	oft) - Vscope	2.2.8	2 – Reyfra	act
Allegati al presente documento	Sezioni interpr	etat	ive onde P			
	1					

DOCUMENTAZI ONE FOTOGRAFI CA - RZ2-

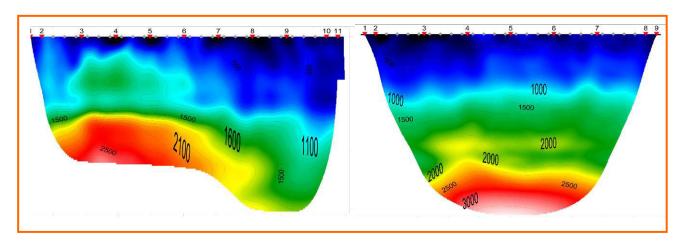
Legenda:

Indagini sismiche a rifrazione tomografica (G0= geofono n. 1 – G24= geofono n. 24)

Indagini sismiche MASW (G0= geofono n. 1 – G24 = geofono n. 24)

Ubicazioni indagini eseguite su stralcio ortofoto (fonte Google Earth)

Laboratorio di Indagini Geotecniche sui terreni


OGGETTO DEI LAVORI

INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE

COMMITTENTE

Comune Di Castelbuono (PA)

INDAGINE SISMICA MASW

INDICE

PREMESSA

STRUMENTAZIONE UTILIZZATA

INDAGINI MASW E CARATTERIZZAZIONE DEI TERRENI

CONCLUSIONI

PREMESSA

Su incarico ricevuto da parte del committente, <u>Comune di Castelbuono (PA).</u> è stata eseguita una indagine sismica di tipo MASW a supporto della <u>"INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE"</u>

Le considerazioni che vengono riportate di seguito sono il risultato delle indagini sismiche effettuate, della verifica e del rilevamento dei litotipi affioranti nell'area in esame ed in una porzione significativamente estesa al contorno.

La campagna di indagine ha previsto l'esecuzione di <u>n° 02 stendimenti</u> sismici denominati MASW1 e MASW2 di lunghezza rispettivamente pari a 72 e 48 m.

La presente metodologia ha permesso di evidenziare semi-quantitativamente le geometrie del substrato identificando discontinuità presenti e legate a probabili variazioni litologiche.

STRUMENTAZIONE UTILIZZATA

La strumentazione utilizzata è costituita da:

- sismografo Ambrogeo Echo 48/2012 48 canali 24 bit che permette l'acquisizione e rappresentazione degli impulsi sismici su PC consentendo una prima operazione di filtraggio e taratura dei dati in sito; i segnali sismici ottenuti vengono registrati simultaneamente sul disco fisso del PC. Inoltre, lo strumento è dotato di sistema di controllo analogico/digitale dei guadagni con funzione di sommatoria dei segnali sismici che consente di ottimizzare il rapporto segnale-rumore;
- geofoni 4.5 Hz verticali del tipo elettromagnetico a bobina mobile (con relativo cavo di collegamento a 48 connettori) che consentono di convertire in segnali elettrici gli spostamenti delle onde sismiche all'interno del terreno;
- cavi sismici ad attacco multipolare muniti di connettori CANNON 54 poli;
- unità esterna di immagazzinamento e memorizzazione dati che permette la verifica dei segnali in situ con possibilità di eventuale trattamento e filtraggio dati
- L' "energizzazione" delle onde nel terreno, è stata realizzata mediante massa battente del peso di 8 kg su apposita piastra metallica opportunamente collocata sullo stesso.
- Il software di acquisizione e interfaccia dati utilizzato durante l'esecuzione degli stendimenti sismici è AMBROGEO ECHO 48/2012 vers. Apr. 2014

I NDAGINI MASW E CARATTERIZZAZIONE DEI TERRENI

Per l'esecuzione dello stendimento sono stati utilizzati 24 geofoni con passo 3.0 metri per lo stendimento MASW1 e 2.0 metri per lo stendimento MASW2 con quattro offset complessivi rispettivamente posti a ± 3.0 e ± 6.0 metri (MASW1) e ± 2.0 e ± 4.0 metri (MASW2) .

Le Nuove Norme Tecniche sulle Costruzioni (NTC 14 gennaio 2008), la normativa tecnica europea gli Eurocodici EC 7 e EC 8 e le più avanzate normative internazionali disciplinano la progettazione e la costruzione di nuovi edifici soggetti ad azioni sismiche e la valutazione della sicurezza e degli interventi di adeguamento su edifici soggetti al medesimo tipo di azioni.

Tale norma ha lo scopo di assicurare che in caso di evento sismico sia protetta la vita umana, siano limitati i danni e rimangano funzionanti le strutture essenziali agli interventi di protezione civile.

Fra le novità più importanti della nuova normativa tecnica in materia di progettazione antisismica:

Estensione della zonazione sismica a tutto il territorio nazionale

L'abbandono del metodo delle tensioni ammissibili in favore del metodo di verifica agli stati limite su edifici soggetti al medesimo tipo di azioni

Una maggiore attenzione verso una corretta modellazione strutturale

L'apertura verso analisi di tipo non lineare

Ci adegua allo standard europeo e mondiale

La nuova normativa ha introdotto la classificazione dei suoli per la definizione dell'azione sismica di progetto in 5+2 categorie sulla base della VS30

Il profilo delle onde di taglio Vs nei primi 30 m di profondità risulta necessario per:

valutare l'azione sismica di progetto al livello delle fondazioni di qualunque struttura,

valutare il rischio di liquefazione del terreno in sito,

valutare rischi di instabilità dei pendii e/o delle opere di sostegno,

valutare i cedimenti dei rilevati stradali, delle opere di sostegno, delle fondazioni degli edifici

valutare la trasmissione delle vibrazioni generate dai treni, dalle macchine vibranti, dalle esplosioni in superficie o in sotterraneo, dal traffico veicolare.

Il parametro VS30 è il parametro geofisico che rappresenta meglio la variabilità geotecnica dei materiali geologici presenti nel sottosuolo: rappresenta la velocità media di propagazione delle onde S entro 30 metri di profondità.

È calcolato mediante la seguente espressione

$$V_{S30} = \frac{30}{\sum_{i=1}^{N} \frac{h_i}{V_i}}$$

Dove:

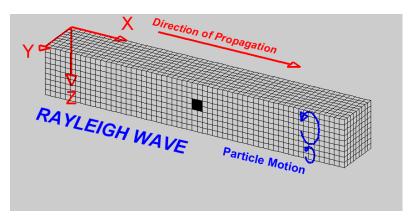
Vi: velocità delle onde S dello strato i-esimo

hi: spessore in metri dello strato i-esimo

N: numero di strati presenti nei primi 30 metri

In base al valore della VS30 si identificano le seguenti 5 categorie del suolo di fondazione (Classificazione del tipo di suolo secondo NTC 14 gennaio 2008):

Suolo	Descrizione geotecnica	Vs30(m/s)
Α	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs30 > 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 metri	>800
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra $360 \div 800$ m/s (ovvero $N_{stp,30} > 50$ nei terreni a grana grossa e $C_{u30} > 250$ KPa nei terreni a grana fine).	360÷800
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra $180 \div 360$ m/s (ovvero $15 < N_{stp,30} < 50$ nei terreni a grana grossa e $70 < C_{u30} < 250$ KPa nei terreni a grana fine).	180÷360
D	Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fina scarsamente consistenti, con spessori superiori a 30 metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 < 180 m/s (ovvero $N_{stp,30}$ < 15 nei terreni a grana grossa e C_{u30} < 70 KPa nei terreni a grana fine).	<180
E	Terreni dei sottosuoli di tipo C o D con spessore non superiore a 20 metri posti sul substrato di riferimento (con $Vs > 800 \text{ m/s}$).	
S1	Depositi di terreni caratterizzati da valori di Vs $30 < 100$ m/s (ovvero 10 KPa $< C_{U, 30} < 20$ KPa , che includono uno strato di almeno 8 metri di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 metri di torba o di argille altamente organiche.	<100
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.	

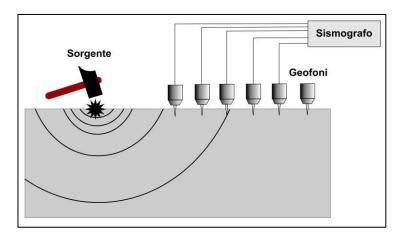

Le tecniche investigative per l'acquisizione di questo parametro sono essenzialmente di tre tipi:

- Prove in foro (down hole e cross hole);
- Profili sismici (riflessione o rifrazione) con geofoni orizzontali ed energizzatori di onde SH;
- Modellazione del sottosuolo mediante l'analisi delle onde di Rayleigh (SASW,MASW e Refraction Microtremor) e l'impiego di geofoni verticali.

La tecnica MASW, utilizzata per il presente studio, consente una modellazione del sottosuolo mediante l'analisi delle onde di Rayleigh.

Le onde di Rayleigh sono generate dall'interazione tra onde di pressione (P) e le onde di taglio verticali (SV) ogni qualvolta esiste una superficie libera in un mezzo omogeneo ed isotropo.

Alla superficie libera hanno moto ellittico retrogrado (moto antiorario) che si inverte ad una profondità di $\lambda/2\pi$: possono esser viste come la sovrapposizione di due componenti separate, una longitudinale e l'altra trasversale, che si propagano lungo la superficie con la stessa velocità ma con differente attenuazione con la profondità.



Tali onde vengono considerate perché la percentuale di energia convertita in onde di Rayleigh è di gran lunga predominante (67%) rispetto a quella coinvolta nella generazione e propagazione delle onde P (7%) ed S (26%).

La propagazione delle onde di Rayleigh – anche se influenzata dalla Vp e della densità - è funzione innanzitutto della VS (parametro di fondamentale importanza nella caratterizzazione geotecnica di un sito). La tecnica MASW può essere schematizzata in tre punti:

acquisizione dei dati di campo: utilizzo di una sorgente attiva per l'energizzazione, acquisizione dei dati con comuni geofoni a componente verticale particolarmente sensibili alle basse frequenze, geofoni da 4.5 Hz, registrazione simultanea di 12 o più canali.

determinazione della Curva di Dispersione (valutazione dello spettro di velocità);

inversione della curva di dispersione interpretata per ottenere il profilo verticale delle Vs che descrive la variazione di Vs con la profondità.

Nelle pagine seguenti si riportano i tabulati ed i grafici della stesa MASW eseguita.

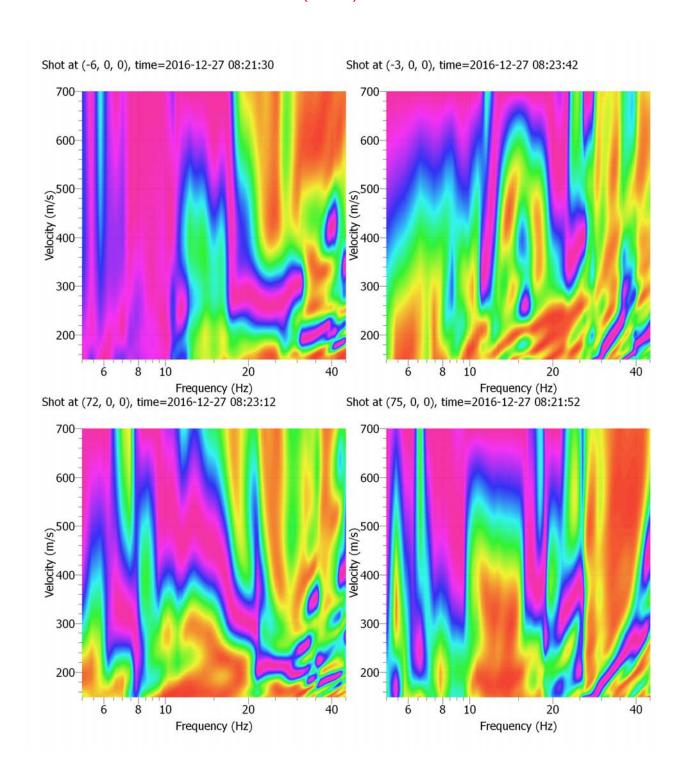
CONCLUSI ONI

Dai valori delle velocità di propagazione delle onde sismiche nonché dalla forma delle varie dromocrone, assimilabile più ad una spezzata che ad una curva, e considerando i risultati delle stese MASW, emerge che il sottosuolo dell'area indagata è così costituito (si riporta di seguito una tabella riassuntiva):

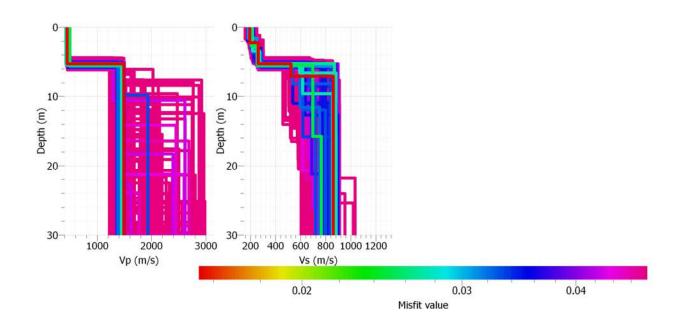
STESA SI SMI CA MASW 1

STESA SI SMI CA	STRATO	Velocità Media delle Onde Sismiche Secondarie m/ sec	SPESSORE – metri - litologia
MASW1	1 (BASSO GRADO DI CONSISTENZA + SPESSORE RIDOTTO DI ALTERAZIONE)	212.5	4.50 - litotipi di bassa consistenza di natura argillosa
	2 (MEDIO-BUONO GRADO DI CONSISTENZA)	566.64	6.81 - litotipi di media consistenza di natura argillosa
	3 (MEDIO-BUONO GRADO DI CONSISTENZA)	687.13	Ind litotipi di media buona consistenza

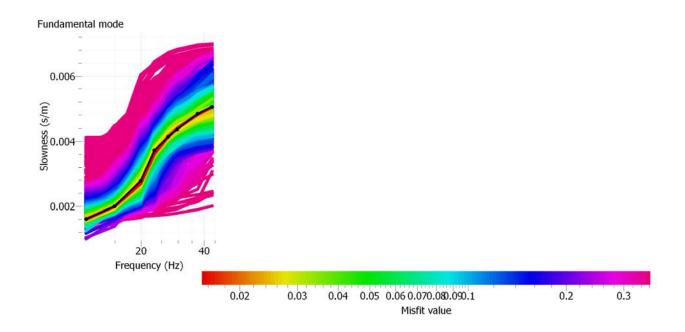
STESA SI SMI CA MASW	<u>Vs30(m/ sec)</u>	Possibile tipo di Suolo	DESCRIZIONE GEOTECNICA
MASW1	496.73	В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra 360÷800 m/s (ovvero N _{stp,30} > 50 nei terreni a grana grossa e C _{u30} > 250 KPa nei terreni a grana fine).


SCHEDA RIEPILOGATIVA DELL'INDAGINE SISMICA ESEGUITA

Tipo Prospezione:	SI SMI CA A RI FRAZI ONE	DOWN HOLE		MASW	х
Nome stendimento	MASW1	11022	!		
Ubicazione					
Strumento utilizzato	AMBROGEO EC	HO 48/ 2012			
Operatore	Geol. A. Ardagna	– A. Mendolia	1		
N° canali utilizzati /bit conversione segnale A/D	24/48				
Geofoni verticali modello/marca	R.T. Clark a bol	oina mobile 1	requenza	a 4.5 Hz	
Geofoni orizzontali modello/marca					
Lunghezza stendimento	72 metri + off	set 3.0 - 6.0	m		
Interdistanza geofonica onde P/Raylegh	2.0 metri				
Interdistanza geofonica onde S					
n. tiri eseguiti onde P	4				
n. tiri eseguiti onde S					
Sistema di energizzazione	Massa battente	8 kg			
Lunghezza finestra acquisizione msec	2 sec.				
Filtro applicato	500-700 Hz				
Funzioni sommatorie applicate	no				
Programma utilizzato per acquisizione	Ambrogeo echo	48/ 2012 ut	ility vers	s. apr. 201	4
Programma utilizzato per elaborazione dati	geopsy - Dinve	r (Sesarray)	Vscope	2.2.82	
Allegati al presente documento	Sezioni interpre	etative			



CURVE DI DISPERSIONE RELATIVE AI 4 SEGNALI OTTENUTI DALLE DIVERSE CONFIGURAZIONI DI ENERGIZZAZIONE (SCOPPI) STENDIMENTO MASW1



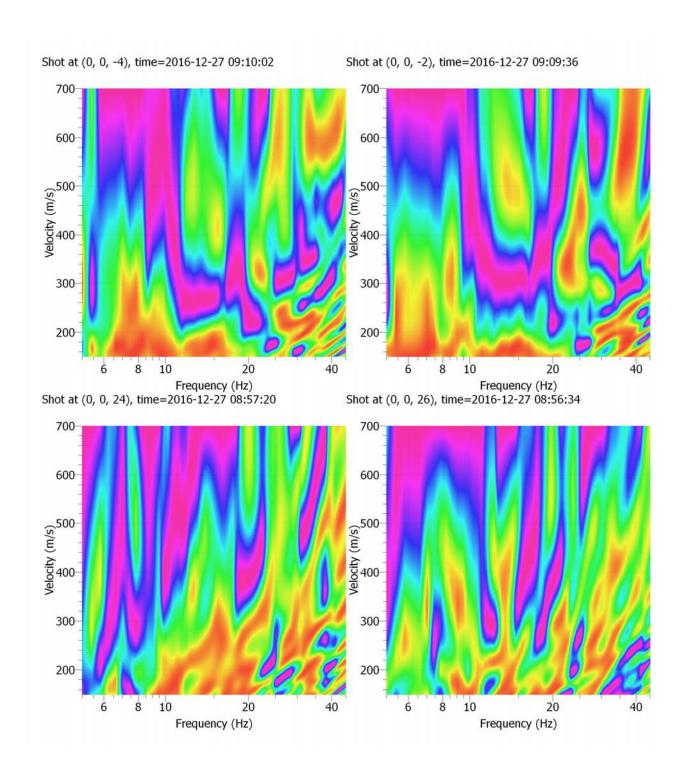
PROFILO VERTICALE DELLE VELOCITA' OTTENUTE DALL'INTERPRETAZIONE DELLE CURVE SOPRASTANTI

CURVA MISFIT TRA MODELLO GENERATO E MODELLO DERIVANTE DAI DATI ACQUISITI

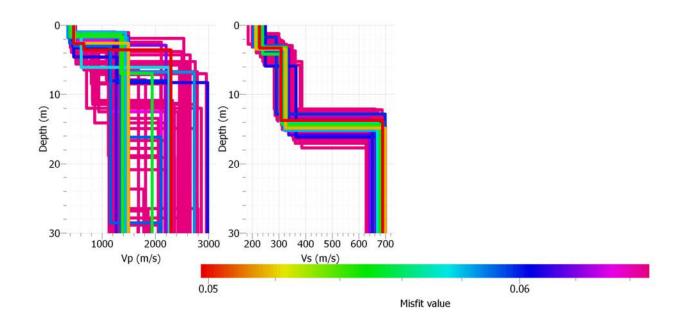
STESA SI SMI CA MASW 2

STESA SI SMI CA	STRATO	Velocità Media delle Onde Sismiche Secondarie m/ sec	SPESSORE – metri - litologia
MASW2	1 (BASSO GRADO DI CONSISTENZA + SPESSORE RIDOTTO DI ALTERAZIONE)	235.28	3.82 - litotipi di bassa consistenza di natura argillosa
	2 (MEDIO-BUONO GRADO DI CONSISTENZA)	380.53	10.00 - litotipi di media consistenza di natura argillosa
	3 (MEDIO-BUONO GRADO DI CONSISTENZA)	672.98	<u>Ind.</u> - litotipi di media buona consistenza

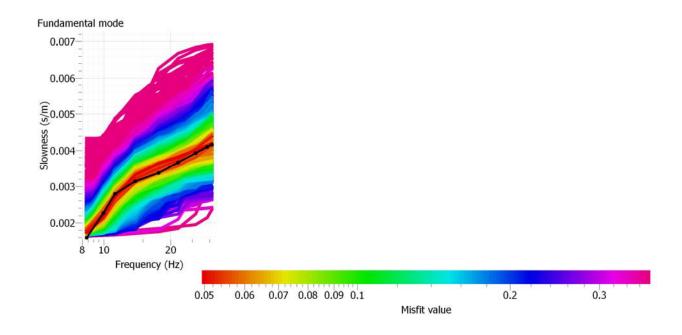
STESA SI SMI CA MASW	<u>Vs30(m/ sec)</u>	Possibile tipo di Suolo	DESCRIZIONE GEOTECNICA
			Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con
MASW2	458.74	В	spessori superiori a 30 metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra 360÷800
			m/s (ovvero $N_{\text{stp,30}} > 50$ nei terreni a grana grossa e $C_{\text{u30}} > 250$ KPa nei terreni a grana fine).


SCHEDA RIEPILOGATIVA DELL'INDAGINE SISMICA ESEGUITA

Tipo Prospezione:	SI SMI CA A RI FRAZI ONE		DOWN HOLE		MASW	х
Nome stendimento	MASW2			<u> </u>		
Ubicazione						
Strumento utilizzato	AMBROGEO EC	НО	48/2012			
Operatore	Geol. A. Ardagna	– A.	Mendolia			
N° canali utilizzati /bit conversione segnale A/D	24/48					
Geofoni verticali modello/marca	R.T. Clark a bo	bina	mobile frequ	enza	4.5 Hz	
Geofoni orizzontali modello/marca						
Lunghezza stendimento	48 metri + of	fset	2.0 – 4.0 m			
Interdistanza geofonica onde P/Raylegh	2.0 metri					
Interdistanza geofonica onde S						
n. tiri eseguiti onde P	4					
n. tiri eseguiti onde S						
Sistema di energizzazione	Massa battente	8 k	g			
Lunghezza finestra acquisizione msec	2 sec.					
Filtro applicato	500-700 Hz					
Funzioni sommatorie applicate	no					
Programma utilizzato per acquisizione	Ambrogeo ech	o 48	2012 utility	vers.	apr. 2014	ļ
Programma utilizzato per elaborazione dati	geopsy - Dinve	r (Se	esarray) – Vso	cope	2.2.82	
Allegati al presente documento	Sezioni interpr	etati	ive			



CURVE DI DISPERSIONE RELATIVE AI 4 SEGNALI OTTENUTI DALLE DIVERSE CONFIGURAZIONI DI ENERGIZZAZIONE (SCOPPI) STENDIMENTO MASW1



PROFILO VERTICALE DELLE VELOCITA' OTTENUTE DALL'INTERPRETAZIONE DELLE CURVE SOPRASTANTI

CURVA MISFIT TRA MODELLO GENERATO E MODELLO DERIVANTE DAI DATI ACQUISITI

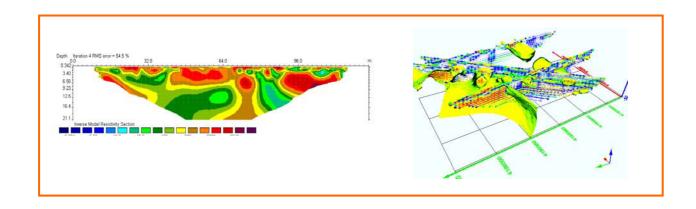
Legenda:

Indagini sismiche a rifrazione tomografica (G0= geofono n. 1 – G24= geofono n. 24)

Indagini sismiche MASW (G0= geofono n. 1 – G24 = geofono n. 24)

Ubicazioni indagini eseguite su stralcio ortofoto (fonte Google Earth)

Laboratorio di Indagini Geotecniche sui terreni



Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010

OGGETTO DEI LAVORI

INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO DI VIA TEN. ERNESTO **FORTE IN CASTELBUONO**

COMMITTENTE **COMUNE DI CASTELBUONO (PA)**

INDICE

<u>Allegati</u>

Premessa

- SEZIONI BIDIMENSIONALI ELETTRO-TOMOGRAFICHE
- UBICAZIONE INDAGINI SU STRALCIO

PREMESSA

Nell'ambito dei lavori inerenti "INDAGINI GEOTECNI CHE-GEOGNOSTI CHE DA EFFETTUARE NEL TRATTO DI VIA TEN. ERNESTO FORTE IN CASTELBUONO " il Committente, COMUNE DI CASTELBUONO, ha incaricato la società GEO 3 s.a.s. per la realizzazione di indagini geofisiche nell'area in esame.

Le considerazioni riportate di seguito sono il risultato di n. 02 stendimenti geoelettrici tomografici realizzati al fine di definire l'assetto elettrostratigrafico dell'area, mettendo eventualmente in evidenza, l'eventuale presenza di elettrostrati correlabili con livelli maggiormente imbibiti all'interno dei terreni investigati. La bontà dell'interpretazione è stata ulteriormente confrontata con il contesto stratigrafico noto.

TOMOGRAFIA ELETTRICA

La tomografia elettrica consiste nella determinazione di profili di resistività dei terreni indagati attraverso un numero elevato di elettrodi. Il georesistivimetro è dotato di una gestione automatica degli elettrodi che, commutandone la disposizione lungo la sezione investigata, varia la profondità di indagine. La configurazione geometrica utilizzata è di tipo *Gradiente XL* per gli stendimenti ERT1 e ERT2.

Il protocollo di acquisizione Gradiente XL può essere considerate una variante ai classici protocolli di tipo Schlumberger e Wenner in quanto anche in questo caso gli elettrodi di potenziale vengono mantenuti internamente rispetto agli elettrodi di corrente non mantenendo tuttavia le caratteristiche di simmetria e costanza del passo tipici dei protocolli tradizionali.

Il vantaggio di utilizzo del protocollo Gradiente è legato, alla possibilità di acquisizione multicanale dello strumento utilizzato, oltre a permettere di meglio evidenziare variazioni latero-verticali rispetto ai classici protocolli sopra enunciati.

STRUMENTAZIONE UTILIZZATA

La strumentazione utilizzata per l'esecuzione dei sondaggi elettrici consiste di:

- GEORESISTIVIMETRO ABEM MODTERRAMETER LS QUADRICANALE;
- n. 02 cavi muniti di sistema di connessione take-outs, ciascuno con 32 attacchi cadauno e spaziatura massima di 5.00 metri;
- n. 64 picchetti in acciaio sezione 13.00 mm;
- sistema di energizzazione interno, con potenza massima output ± 600 V;
- SOFTWARE RES 2 INV che consente l'elaborazione dei dati, restituiti in forma di matrice, ed una immediata elaborazione.

RESTITUZIONE DEI DATI

Nell'ambito dei lavori eseguiti sono stati realizzati n. 02 profili geoelettrici:

- ERT1, con lunghezza pari a 126 m , consentendo di investigare i terreni sino ad una profondità massima di circa 25.0 m dal p.c;
- ERT2 con lunghezza pari a 63 m , consentendo di investigare i terreni sino ad una profondità massima di circa 14.5 m dal p.c; (vedi sezioni allegate)

Al fine di minimizzare le resistenze di attacco del sistema picchetti-elettrodi si è provveduto alla imbibizione degli stessi con soluzione salina preventivamente miscelata.

STENDIMENTO ERT1

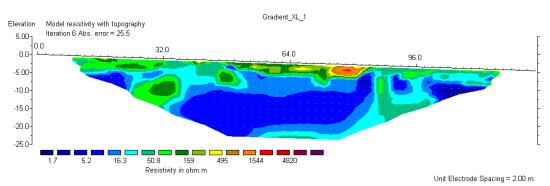
SCHEDA RIEPILOGATIVA DELL'INDAGINE ELETTRICA ESEGUITA

Tipo Prospezione:	SEV		SEO		TOMOGRAFIA ELETTRICA	X	
Nome stendimento	ERT01						
Ubicazione	VEDI PLANIN	VEDI PLANIMETRIA ALLEGATA					
Strumento utilizzato	ABEM Terram	eter	LS				
Operatore	Geol. A. Mendo	lia, G	eol. A. Ardagr	na			
N° elettrodi utilizzati / N° totali	64/64						
Interdistanza cavi	5 m						
Interdistanza elettrodica	2 m						
Lunghezza stendimento	126 m						
Sistema di energizzazione	ABEM interno, con potenza massima output ± 600 V						
Filtro applicato	Su software i	n fas	se di editing				
Scarto max misura diretta/inversa	± 0.2%						
Programma utilizzato per acquisizione	ABEM Terram	eter					
Programma utilizzato per elaborazione dati	RES 2d inv						
Note alla presente scheda	xxxxx	•		•	_		
Allegati al presente documento	Sezioni inter	oreta	tive 2D				
	Overlay su su	ippoi	to google ea	rth			

FOTO 1 stendimento geoelettrico T1

Indagine elettrica ERT1

Il suddetto stendimento è stato realizzato sfruttando un passo interelettrodico pari a 2 m per una lunghezza complessiva pari a 126 m con configurazione interelettrodica di tipo Gradiente XL (n. 64 picchetti utilizzati).

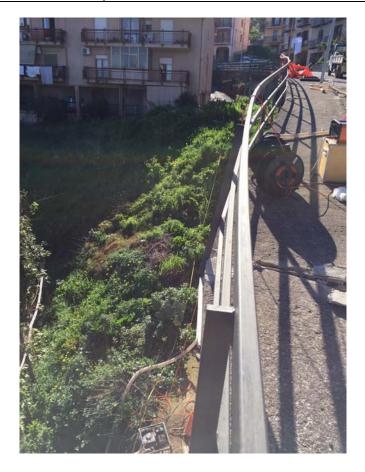

Come evidenziato dal grafico, la configurazione geometrica utilizzata ha permesso di potere investigare fino ad un massimo di circa 25.0 m dal P.C.

La sezione in esame ha mostrato dei valori di resistività variabili da 1.7 a circa 5000 Ω^*m . Nello specifico è stato evidenziato un primo elettrostrato con spessore variabile da 5 a circa 15 m caratterizzato da una forte componente di variabilità laterale con range di resistività è compreso tra 50 e 5000 Ω^*m . Analizzando lateralmente questo elettrostrato, si nota come tra la progressiva 0.00 m e la progressiva 48.00 m, ad una profondità compresa tra 0.00 e 15.00 m circa, si riscontra la presenza di un'area, caratterizzata da valori di resistività compresi tra 50 e 159 Ω *m, correlabile con litologie di tipo argilloso, avente grado di imbibizione variabile; proseguendo lungo la sezione, tra la progressiva 48.00 m e la progressiva 74.00 m, ad una profondità compresa tra 0.00 e 5.00 m circa, viene evidenziata un'area caratterizzata da valori di resistività compresi tra 159 e 500 Ω *m, correlabile con la zona in dissesto su manto stradale, riempita al suo interno con materiale arido. Successivamente, tra la progressiva 74.00 m e la progressiva 84.00 m, ad una profondità compresa tra 0.00 e 5.00 m circa, si riscontra la presenza di un'area, caratterizzata da alti valori di resistività compresi tra 1500 e 5000 Ω *m, compatibile con litologie a consistenza pseudo litoide e grado di imbibizione scarso. Tra la progressiva 84.00 m e la progressiva 126.00 m, ad una profondità compresa tra 0.00 e 4.00 m circa, si riscontra la presenza di un'area, caratterizzata da valori di resistività compresi tra 50 e 100 Ω *m, compatibile con litologie di tipo argilloso, avente grado di imbibizione variabile.

Otre le profondità sopra enunciate e fino alla massima capacità di indagine è stata individuata la presenza di un secondo elettrostrato, caratterizzato da valori di resistività compresi tra 1.7 e $30~\Omega^*m$, correlabile con litotipi argillosi.

INDAGINE ELETTRICA ERT1

SEZIONE BIDIMENSIONALE ELETTRO-TOMOGRAFICA METODO GRADIENTE_XL



Horizontal scale is 14.98 pixels per unit spacing Vertical exaggeration in model section display = 0.91 First electrode is located at 0.0 m. Last electrode is located at 126.0 m.

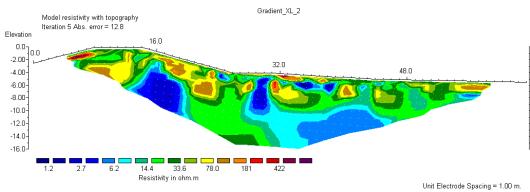
STENDIMENTO ERT2

SCHEDA RIEPILOGATIVA DELL'INDAGINE ELETTRICA ESEGUITA

Tipo Prospezione:	SEV		SEO		TOMOGRAFIA ELETTRICA	Х	
Nome stendimento	ERT02						
Ubicazione	VEDI PLANIMETRIA ALLEGATA						
Strumento utilizzato	ABEM Terrameter LS						
Operatore	Geol. A. Mendolia, Geol. A. Ardagna						
N° elettrodi utilizzati / N° totali	64/64						
Interdistanza cavi	5 m						
Interdistanza elettrodica	1 m						
Lunghezza stendimento	63 m						
Sistema di energizzazione	ABEM interno, con potenza massima output ± 600 V						
Filtro applicato	Su software in fase di editing						
Scarto max misura diretta/inversa	± 0.2%						
Programma utilizzato per acquisizione	ABEM Terrameter						
Programma utilizzato per elaborazione dati	RES 2d inv						
Note alla presente scheda	xxxxx						
Allegati al presente documento	ati al presente documento Sezioni interpretative 2D Overlay su supporto google earth						

Indagine elettrica T2

Il suddetto stendimento è stato realizzato sfruttando un passo interelettrodico pari a 1 m per una lunghezza complessiva pari a 63 m con configurazione interelettrodica di tipo Gradiente XL (n. 64 picchetti utilizzati).


Come evidenziato dal grafico, la configurazione geometrica utilizzata ha permesso di potere investigare fino ad un massimo di circa 16.0 m dal P.C.

La sezione in esame ha mostrato dei valori di resistività variabili da 1.2 a circa 500 Ω^*m ; nello specifico si evidenzia un <u>primo elettrostrato</u> con spessore variabile di circa 6.0 m caratterizzato da una forte componente di variabilità laterale con range di resistività compresi tra 14.0 e 78.0 Ω^*m , compatibili con litologie di tipo argilloso mediamente imbibite.

Otre tale profondità e fino alla massima capacità di indagine è stata individuata la presenza di un secondo elettrostrato, caratterizzato da valori di resistività compresi tra 1.2 e $50 \Omega^*$ m, correlabile con litotipi argillosi.

INDAGINE ELETTRICA ERT2

SEZIONE BIDIMENSIONALE ELETTRO-TOMOGRAFICA METODO SCHLUMBERGER

Horizontal scale is 15.52 pixels per unit spacing Vertical exaggeration in model section display = 0.80 First electrode is located at 0.0 m. Last electrode is located at 63.0 m.

Legenda:

Indagini in tomografia elettrica (E0= elettrodo n. 1 - E32 = elettrodo n. 32)

Ubicazioni indagini eseguite su stralcio ortofoto (fonte Google Earth)

Laboratorio di Indagini Geotecniche sui terreni

Autorizzato ai sensi del DPR 06/06/01 n. 380 art. 59 - n. prot. 5594 del 25/06/2010

OGGETTO DEI LAVORI

INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE

COMMITTENTE

Comune Di Castelbuono (PA)

MISURAZIONE INIZIALE E CONTROLLO VERTICALITA'

Laboratorio indagini geotecniche – Indagini geofisiche – Geotecnica in situ

1- PREMESSA

Si redige la presente relazione a commento delle misurazioni eseguite a verifica del controllo di verticalità nei fori installati con tubo inclinometrico nell'ambito della "INDAGINI GEOTECNICHE-GEOGNOSTICHE DA EFFETTUARE NEL TRATTO VIA TEN. ERNESTO FORTE".

Al fine di monitorare l'area in questione, sono stati posti in opera otto tubi inclinometrici opportunamente istallati e sui quali sono state eseguite misure strumentali (al momento n. 01 lettura).

Il monitoraggio ha previsto l'impiego di una sonda mobile con lettura digitale dal basso su due piani orientati uno ortogonalmente all'altro.

Laboratorio indagini geotecniche - Indagini geofisiche - Geotecnica in situ

2- ESECUZIONE DELLE MISURE

2.1 installazione dei tubi inclinometrici

Contestualmente all'esecuzione della campagna di indagini geognostiche nel foro denominato S2 è stato installato un tubo inclinometrico in alluminio, del diametro di 76 mm, successivamente cementato con boiacca liquida di cemento e bentonite nell'intercapedine esistente tra diametro interno del foro e diametro esterno del tubo e pertanto resi solidali al terreno. Tale istallazione ha previsto la messa in opera di spezzoni profilati della lunghezza di 3 metri, giuntati con un apposito manicotto opportunamente rivettati, sigillati con silicone ed appoggiati al fondo foro.

In situ la guida di riferimento, G1, è stata contrassegnata con il colore rosso sul bordo superiore del tubo.

2.2 Strumentazione utilizzata

L'attrezzatura utilizzata ai fini del monitoraggio inclinometrico è la seguente:

- 1) sonda inclinometrica OTR 310 S munita di sensori servo-accelerometrici (sensibilità A/B \pm 25.000 sen α);
- 2) cavo di lunghezza pari a 100m munito di tacche di riferimento ogni 0.5 m;
- 3) strozza cavo con manicotto di raccordo in alluminio;
- 4) data logger OTR OG 387 munito di memoria interna per immagazzinamento dati;
- 5) sonda testimone in ottone munita di cavo in acciaio.

Allegato al presente documento viene fornito il certificato di taratura aggiornato del sistema eseguita a cura dalla ditta costruttrice.

I dati ottenuti vengono elaborati mediante Software OG 390 (OTR).

Laboratorio indagini geotecniche - Indagini geofisiche - Geotecnica in situ

2.3 procedura di esecuzione delle misure

La misura inclinometrica viene eseguita rilevando le variazioni nel tempo (lungo le cadenze specificate negli appositi allegati) delle inclinazioni di un apposito tubo inclinometrico, installato verticalmente entro foro di sondaggio.

L'inclinazione è rilevata da una sonda inclinometrica mobile, inserita periodicamente nel tubo sempre agli stessi livelli, e la cui posizione azimutale è controllata da guide o scanalature profilate nel tubo.

Due sensori ortogonali montati nella sonda rilevano, al momento della lettura, l'inclinazione del tratto di tubo sui due piani verticali materializzati dalle guide. La procedura adottata richiede 4 inserimenti della sonda, uno per ogni guida, in modo da compensare eventuali derive meccaniche o di amplificazione della torpedine di misura.

2.4 elaborazione e correzione delle misure

L'integrazione delle variazioni di inclinazione alle varie profondità, trasformate in modulo di spostamento orizzontale, restituisce la curva di deformazione del tubo al momento della misura, o **deformata**. Questa è una curva tridimensionale, ma viene rappresentata sul piano (*vedi grafico riassuntivo*).

E' da ricordare che ad ogni misura inclinometrica è associato un certo grado di incertezza, funzione di numerosi elementi, alcuni dei quali possono essere resi meno influenti curando l'intero processo di lettura (*letture su piani coniugati, taratura dello strumento, impiego del medesimo strumento di misura..*), mentre altri si evidenziano da opportuno trattamento dei dati.

La metodologia di filtraggio del segnale adottata prevede sia l'analisi statistica degli spostamenti locali, che l'analisi del comportamento delle misure al "piede" del tubo, supposto stabile.

Per ogni misura sono allegate le schede delle misure di campagna (*dove vengono riportati i dati acquisiti*), i grafici di controllo dei dati rilevati ed infine i grafici delle deformate ottenute.

Laboratorio indagini geotecniche - Indagini geofisiche - Geotecnica in situ

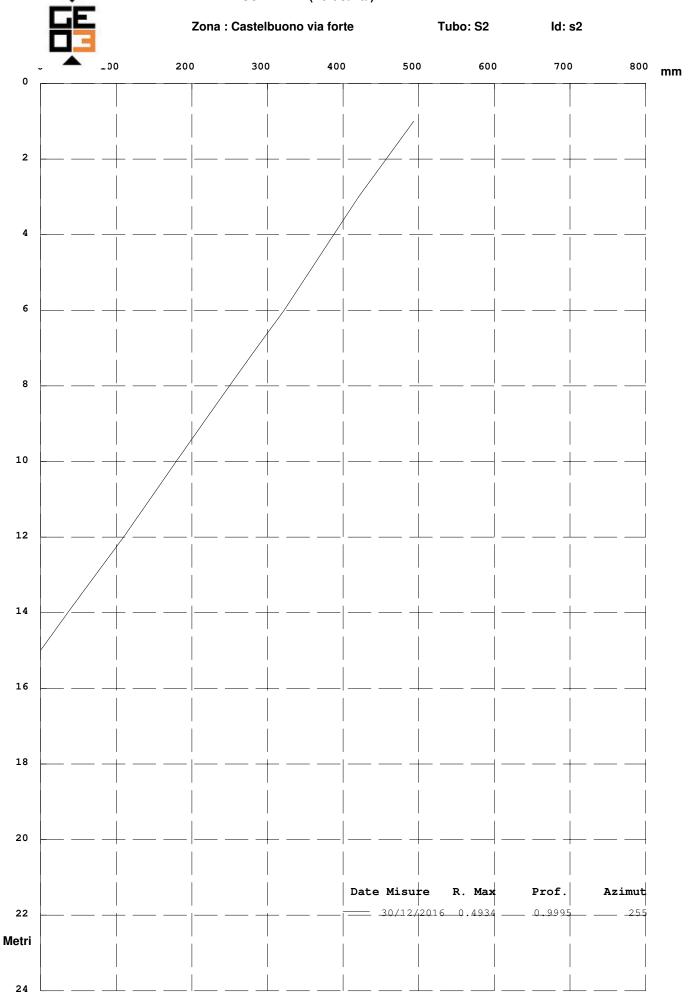
Nel caso specifico, trattandosi della prima lettura eseguita, non si potrà pertanto parlare di spostamento relativo rispetto a una lettura di riferimento, ma di semplice controllo della verticalità del foro rispetto a una ipotetica colonna verticale. Scopo del presente elaborato è pertanto quello di illustrare lo stato attuale di ubicazione del tubo inclinometrico con la profondità; successivamente le letture eseguite con periodica cadenza permetteranno di verificare eventuali variazioni rispetto a una lettura di riferimento.

3- COMMENTO ALLE MISURE

TUBO S2

Sul foro S1, installato in data 28/12/2016 con tubo inclinometrico in alluminio fino a una profondità pari a.00 m dal p.c..

Come prima enunciato al momento attuale l'analisi della deformata non permette di potere effettuare alcuna valutazione circa l'eventuale movimento del tubo inclinometrico lungo i due piani di lettura ma solamente un controllo della sua ubicazione, intendendo per deformata la semplice integrazione degli spostamenti locali rispetto alla verticale.


La deformata massima misurata sul tubo è stata di 0.4934 m, costituendo quest'ultimo un valore assoluto e non riferibile ad alcuna precedente misurazione.

Le letture successive permetteranno di ottenere dati interpretabili in maniera significativa.

Verticalità (Elaborazione in Assoluto dal Basso)

N°	Profondità m.	Sommatoria X m.	Sommatoria Y m.	Risultante m.	Azimut (°)
1	1.00	-0.1266	-0.4768	0.4934	255.13
2	2.00	-0.1144	-0.4425	0.4570	255.50
3	3.00	-0.1027	-0.4078	0.4205	255.86
4	4.00	-0.0944	-0.3760	0.3877	255.91
5	5.00	-0.0857	-0.3443	0.3548	256.02
6	6.00	-0.0766	-0.3128	0.3221	256.25
7	7.00	-0.0662	-0.2778	0.2856	256.60
8	8.00	-0.0560	-0.2435	0.2498	257.04
9	9.00	-0.0464	-0.2093	0.2144	257.51
10	9.99	-0.0394	-0.1751	0.1794	257.32
11	10.99	-0.0318	-0.1411	0.1447	257.31
12	11.99	-0.0242	-0.1073	0.1100	257.31
13	12.99	-0.0164	-0.0709	0.0728	256.96
14	13.99	-0.0084	-0.0351	0.0361	256.61
15	14.99	0.0000	0.0000	0.0000	0.00

RISULTANTE (Verticalità)

